Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny generators turn waste heat into power

Abstract:
The second law of thermodynamics is a big hit with the beret-wearing college crowd because of its implicit existential crunch. The tendency of a closed systems to become increasingly disordered if no energy is added or removed is a popular, if not depressing, "things fall apart" sort-of-law that would seem to confirm the adolescent experience.

Tiny generators turn waste heat into power

Washington, DC | Posted on September 28th, 2010

Now a joint team of Ukrainian and American scientists has demanded more work and less poetry from the second law of thermodynamics, proposing a novel "pyroelectric" method to power tiny devices using waste heat.

Using tiny structures called ferroelectric nanowires, they can rapidly generate an electrical current in response to any change in the ambient temperature, harvesting otherwise wasted energy from thermal fluctuations. Their report appears in the Journal of Applied Physics, which is published by the American Institute of Physics.

Explains lead researcher Anna Morozovska of the National Academy of Sciences of Ukraine, "The second law of thermodynamics rules modern life: Through all kinds of industry, humans consistently produce an enormous amount of waste heat. However, the laws of thermodynamics do not exclude rescuing some of this energy by harvesting the thermal fluctuations to produce electricity."

Pyroelectrictricity can play key role in consumer electronics, says Morozovska, and recovering this heat in the form of pyroelectric energy may bring about a new era of "tiny energy." Pyroelectric nanogenerators could be extremely useful for powering specific tasks in biological applications, medicine and nanotechnology, particularly in space because they perform well in low temperatures.

In an investigation of the pyroelectric properties of ferroelectric nanowires, the team analyzed how the pyroelectric coefficient corresponds to the radius of the wire and its coupling. They found that the smaller the wire radius, the more the pyroelectric coefficient diverges until a critical radius at which the response changes to paraelectric (above the Curie temperature). This so-called "size effect" could be used to tune the phase transition temperatures in ferroelectric nanostructures, thus enabling a system with a large, tunable, pyroelectric response.

In theory, the use of rectifying contacts could enable the polarized ferroelectric nanowire to generate a giant, pyroelectric, direct current and voltage in response to temperature fluctuations that could be harvested and detected using a bolometric detector. Such a nanoscale device would not contain any moving parts and could be suitable for long-term operation in ambient applications such as in-vitro biological systems and outer space. The researchers calculate that these little nanogenerators would have very high efficiency at low temperatures, decreasing at warmer temperatures.

The article, "Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting" by Anna N. Morozovska, Eugene A. Eliseev, George S. Svechnikov, and Sergei V. Kalinin appears in the Journal of Applied Physics. jap.aip.org/resource/1/japiau/v108/i4/p042009_s1

####

About American Institute of Physics
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

About Journal of Applied Physics

Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: jap.aip.org/

For more information, please click here

Contacts:
Jason Bardi

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Discoveries

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Alliances/Trade associations/Partnerships/Distributorships

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Technology Companies Join Forces for TEM Imaging and Analysis August 3rd, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project