Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Tiny generators turn waste heat into power

Abstract:
The second law of thermodynamics is a big hit with the beret-wearing college crowd because of its implicit existential crunch. The tendency of a closed systems to become increasingly disordered if no energy is added or removed is a popular, if not depressing, "things fall apart" sort-of-law that would seem to confirm the adolescent experience.

Tiny generators turn waste heat into power

Washington, DC | Posted on September 28th, 2010

Now a joint team of Ukrainian and American scientists has demanded more work and less poetry from the second law of thermodynamics, proposing a novel "pyroelectric" method to power tiny devices using waste heat.

Using tiny structures called ferroelectric nanowires, they can rapidly generate an electrical current in response to any change in the ambient temperature, harvesting otherwise wasted energy from thermal fluctuations. Their report appears in the Journal of Applied Physics, which is published by the American Institute of Physics.

Explains lead researcher Anna Morozovska of the National Academy of Sciences of Ukraine, "The second law of thermodynamics rules modern life: Through all kinds of industry, humans consistently produce an enormous amount of waste heat. However, the laws of thermodynamics do not exclude rescuing some of this energy by harvesting the thermal fluctuations to produce electricity."

Pyroelectrictricity can play key role in consumer electronics, says Morozovska, and recovering this heat in the form of pyroelectric energy may bring about a new era of "tiny energy." Pyroelectric nanogenerators could be extremely useful for powering specific tasks in biological applications, medicine and nanotechnology, particularly in space because they perform well in low temperatures.

In an investigation of the pyroelectric properties of ferroelectric nanowires, the team analyzed how the pyroelectric coefficient corresponds to the radius of the wire and its coupling. They found that the smaller the wire radius, the more the pyroelectric coefficient diverges until a critical radius at which the response changes to paraelectric (above the Curie temperature). This so-called "size effect" could be used to tune the phase transition temperatures in ferroelectric nanostructures, thus enabling a system with a large, tunable, pyroelectric response.

In theory, the use of rectifying contacts could enable the polarized ferroelectric nanowire to generate a giant, pyroelectric, direct current and voltage in response to temperature fluctuations that could be harvested and detected using a bolometric detector. Such a nanoscale device would not contain any moving parts and could be suitable for long-term operation in ambient applications such as in-vitro biological systems and outer space. The researchers calculate that these little nanogenerators would have very high efficiency at low temperatures, decreasing at warmer temperatures.

The article, "Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting" by Anna N. Morozovska, Eugene A. Eliseev, George S. Svechnikov, and Sergei V. Kalinin appears in the Journal of Applied Physics. jap.aip.org/resource/1/japiau/v108/i4/p042009_s1

####

About American Institute of Physics
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

About Journal of Applied Physics

Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: jap.aip.org/

For more information, please click here

Contacts:
Jason Bardi

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Discoveries

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Dyesol Joins Solliance as an Industrial Partner June 17th, 2015

The European project SVARNISH, a step forward in the food packaging sector June 11th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project