Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Hydrogen-Powered, Solar-Inspired Nano-Battery

Abstract:
There's a big buzz today over future nanostructure devices performing specialized jobs in everything from electronics to medicine. But what's still needed are unconventional ways to power these tiny machines.

Hydrogen-Powered, Solar-Inspired Nano-Battery

Chicago, IL | Posted on September 26th, 2010

Eduard Karpov, University of Illinois at Chicago assistant professor of civil and materials engineering, just received a three-year, $217,000 grant from the National Science Foundation to develop a new battery he is calling a catalothermionic generator.

It will generate power on a flat planar surface, just like in a photovoltaic or solar cell, only instead of sunlight being the energy source, hydrogen oxidation will power the electron flow.

Unlike conventional hydrogen fuel cell technology that has been around for more than a century, this new approach, called "chemovoltaics," harnesses energy from hydrogen oxidation taking place on a film-like catalytic metal surface. Unlike fuel cells, the chemovoltaic device can be very small and flat and does not release or absorb heat, allowing it to run at much cooler temperatures. But like fuel cells, its energy-production byproduct is only water.

"This device is the child of the nanotechnology era," Karpov said. "It consists of nano-thickness layers of catalytic material on top of semiconductor substrates.

"We know the basic physics, but utilizing it for an energy application is a new idea," he said.

Karpov and his UIC laboratory team will test structural variations for building these nano-sized devices to generate maximum power. They will also test various types of catalytic materials such as platinum, palladium or some oxides to see what works best, vary the thicknesses of the catalytic material to see if that makes a difference, and try various patterned surfaces on the catalyst to learn if this affects performance.

Karpov envisions initial applications for these tiny generators in critical military devices where their small size and low weight will outweigh the high startup costs. As the technology develops, the generator might be attached directly to computer chips as a power source, or to tiny devices such as a nano-robot.

"Our main task is to show that this phenomenon, in principle, can lead to a commercially viable technology that has the potential to compete with fuel cells," he said.

####

For more information, please click here

Contacts:
University of Illinois at Chicago
Office of Public Affairs (MC 288)
601 S. Morgan St.
Chicago, IL 60607-7113
(312) 996-3456

Media Contact:
Paul Francuch
(312) 996-3457

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Discoveries

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Announcements

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

Solar/Photovoltaic

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic