Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists Using Lasers to Cool and Control Molecules

Abstract:
Ever since audiences heard Goldfinger utter the famous line, "No, Mr. Bond; I expect you to die," as a laser beam inched its way toward James Bond and threatened to cut him in half, lasers have been thought of as white-hot beams of intensely focused energy capable of burning through anything in their path.

Scientists Using Lasers to Cool and Control Molecules

New Haven, CT | Posted on September 23rd, 2010

Now a team of Yale physicists has used lasers for a completely different purpose, employing them to cool molecules down to temperatures near what's known as absolute zero, about -460 degrees Fahrenheit. Their new method for laser cooling, described in the online edition of the journal Nature, is a significant step toward the ultimate goal of using individual molecules as information bits in quantum computing.

Currently, scientists use either individual atoms or "artificial atoms" as qubits, or quantum bits, in their efforts to develop quantum processors. But individual atoms don't communicate as strongly with one another as is needed for qubits. On the other hand, artificial atoms—which are actually circuit-like devices made up of billions of atoms that are designed to behave like a single atom—communicate strongly with one another, but are so large they tend to pick up interference from the outside world. Molecules, however, could provide an ideal middle ground.

"It's a kind of Goldilocks problem," said Yale physicist David DeMille, who led the research. "Artificial atoms may prove too big and individual atoms may prove too small, but molecules made up of a few different atoms could be just right."

In order to use molecules as qubits, physicists first have to be able to control and manipulate them—an extremely difficult feat, as molecules generally cannot be picked up or moved without disturbing their quantum properties. In addition, even at room temperature molecules have a lot of kinetic energy, which causes them to move, rotate and vibrate.

To overcome the problem, the Yale team pushed the molecules using the subtle kick delivered by a steady stream of photons, or particles of light, emitted by a laser. Using laser beams to hit the molecules from opposite directions, they were able to reduce the random velocities of the molecules. The technique is known as laser cooling because temperature is a direct measurement of the velocities in the motion of a group of molecules. Reducing the molecules' motions to almost nothing is equivalent to driving their temperatures to virtually absolute zero.

While scientists had previously been able to cool individual atoms using lasers, the discovery by the Yale team represents the first time that lasers have just as successfully cooled molecules, which present unique challenges because of their more complex structures.

The team used the molecule strontium monofluoride in their experiments, but DeMille believes the technique will also prove successful with other molecules. Beyond quantum computing, laser cooling molecules has potential applications in chemistry, where near absolute zero temperatures could induce currently inaccessible reactions via a quantum mechanical process known as "quantum tunneling." DeMille also hopes to use laser cooling to study particle physics, where precise measurements of molecular structure could give clues as to the possible existence of exotic, as of yet undiscovered particles.

"Laser cooling of atoms has created a true scientific revolution. It is now used in areas ranging from basic science such as Bose-Einstein condensation, all the way to devices with real-world impacts such as atomic clocks and navigation instruments," DeMille said. "The extension of this technique to molecules promises to open an exciting new range of scientific and technological applications."

Other authors of the paper include Edward Shuman and John Barry (both of Yale University).

####

About Yale University
Yale University comprises three major academic components: Yale College (the undergraduate program), the Graduate School of Arts and Sciences, and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale.

For more information, please click here

Contacts:
Suzanne Taylor Muzzin
203-432-8555

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Discoveries

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Photonics/Optics/Lasers

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

Quantum nanoscience

September 5th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project