Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-Vehicle Acts As Cluster Bomb for Tumors

Abstract:
Chemotherapy, while an effective cancer treatment, also brings debilitating side effects such as nausea, liver toxicity, and a battered immune system. Now, a new way to deliver this life-saving therapy to cancer patients—getting it straight to the source of the disease—has been developed by Dan Peer and Rimona Margalit and their colleagues at Tel Aviv University.

Nano-Vehicle Acts As Cluster Bomb for Tumors

Bethesda, MD | Posted on September 20th, 2010

Drs. Peer and Margalit have developed a nano-sized vehicle with the ability to deliver chemotherapy drugs directly into cancer cells while avoiding interaction with healthy cells, increasing the efficiency of chemotherapeutic treatment while reducing its side effects.

"The vehicle is very similar to a cluster bomb," explains Dr. Peer. Inside the nano-vehicle itself are nanoparticles loaded with chemotherapy drugs. When the delivery vehicle, comprising multiple nanoparticles, comes into contact with cancer cells, it releases the chemotherapeutic payload directly into the cell. According to Dr. Peer, the nanoparticle device can be used to treat many different types of cancer, including lung, blood, colon, breast, ovarian, pancreatic, and even several types of brain cancers. A paper describing their new nanoparticles and their use in targeting tumors appears in the journal Biomaterials.

The key to the drug delivery platform is hyaluronan, the molecule used to create the outer coating of this clustered nanoparticle. Hyaluronan is a sugar recognized by receptors on many types of cancer cells. "When the nano-vehicle interacts with the receptor on the cancerous cell, the receptor undergoes a structural change and the chemotherapy payload is released directly into the cancer cell," says Dr. Peer. The result, he explains, is a more to more focused chemotherapeutic treatment against the diseased cells.

Because the nanoparticle reacts only with cancer cells, the healthy cells that surround them remain untouched and unaffected by the therapy. The nano-vehicle itself, adds Dr. Peer, is made from naturally occurring lipid molecules that decompose in the body once the nanoparticles have performed their function, making the treatment potentially safer than current therapies. Tests with tumor-bearing mice showed that hyaluronan-coated nanoparticles filled with paclitaxel were more effective than either free paclitaxel or Abraxane—an albumin nanoparticle loaded with paclitaxel—at stopping tumor growth.

This work is detailed in a paper titled, "Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors." An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Possible Futures

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Nanotechnology Treatment Found to Inhibit Mesothelioma Tumor Growth November 16th, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Nanobiotechnology

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Making spintronic neurons sing in unison November 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project