Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Novel Chemistry Amplifies Ability of Nanoparticles

Abstract:
Investigators at the Massachusetts General Hospital and Harvard Medical School has developed a chemical methodology that can be used to attach virtually any antibody to a nanoparticle without the need to optimize the reaction conditions.

Novel Chemistry Amplifies Ability of Nanoparticles

Bethesda, MD | Posted on September 20th, 2010

One of the most promising characteristics of nanoparticles as diagnostic agents is the ability to attach to the nanoparticles surface any of a wide variety of targeting molecules that can increase the distinction between malignant and healthy cells, making it easier to spot small numbers of diseased cells within a sea of healthy cells. However, the development of such targeted nanoparticles has been hampered by the need to optimize the chemical methods used to link the targeting molecule to the nanoparticle for each unique combination of the two.

Now, a team of investigators at the Massachusetts General Hospital and Harvard Medical School has developed a chemical methodology that can be used to attach virtually any antibody to a nanoparticle without the need to optimize the reaction conditions. This team, led by Ralph Weissleder, who is a co-principal investigator of the MIT-Harvard Center of Cancer Nanotechnology Excellence, published their findings in the journal Nature Nanotechnology.

Using a nanoparticle that is both magnetic and fluorescent and three different monoclonal antibodies known to target tumor-associated surface molecules, Dr. Weissleder and his collaborators applied what they call "bioorthogonal chemistry" to create nanoparticles that bind strongly to the targeted tumor types. They showed that binding took place with the proper cells using a novel miniaturized magnetic resonance detector system developed by the Weissleder team for use in point-of-care applications.

The investigators then compared the binding ability of their targeted nanoparticles with those prepared using one of the now-standard approaches for linking antibodies to nanoparticles. The new process created nanoparticles that stuck to their targeted cells with 10 to 15 times the avidity of those nanoparticles prepared with standard methods. In addition to improving the sensitivity of tumor cell detection using targeted nanoparticles, this new chemistry could also improve strategies for developing targeted drug delivery applications.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "Bioorthogonal chemistry amplifies nanoparticle binding and enhances sensitivity of cell detection." An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Nanomedicine

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Announcements

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanobiotechnology

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic