Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanocatalyst is a gas

Professor Michael Wong
Professor Michael Wong

Abstract:
A nanoparticle-based catalyst developed at Rice University may give that tiger in your tank a little more roar.

By Mike Williams

Nanocatalyst is a gas

Houston, TX | Posted on September 19th, 2010

A new paper in the Journal of the American Chemical Society details a process by Rice Professor Michael Wong and his colleagues that should help oil refineries make the process of manufacturing gasoline more efficient and better for the environment.

In addition, Wong said, it could produce higher-octane gasoline and save money for an industry in which a penny here and a penny there add millions to the bottom line.

Wong's team at Rice, in collaboration with labs at Lehigh University, the Centre for Research and Technology Hellas and the DCG Partnership of Texas, reported this month that sub-nanometer clusters of tungsten oxide lying on top of zirconium oxide are a highly efficient catalyst that turns straight-line molecules of n-pentane, one of many hydrocarbons in gasoline, into better-burning branched n-pentane.

While the catalytic capabilities of tungsten oxide have long been known, it takes nanotechnology to maximize their potential, said Wong, a Rice professor of chemical and biomolecular engineering and of chemistry.

After the initial separation of crude oil into its basic components -- including gasoline, kerosene, heating oil, lubricants and other products -- refineries "crack" (by heating) heavier byproducts into molecules with fewer carbon atoms that can also be made into gasoline. Catalysis, a chemical process, further refines these hydrocarbons.

That's where Wong's discovery comes in. Refineries strive to make better catalysts, he said, although "compared with the academic world, industry hasn't done much in terms of new synthesis techniques, new microscopy, new biology, even new physics. But these are things we understand in the context of nanotechnology.

"We have a way to make a better catalyst that will improve the fuels they make right now. At the same time, a lot of existing chemical processes are wasteful in terms of solvents, precursors and energy. Improving a catalyst can also make the chemical process more environmentally friendly. Knock those things out, and they gain efficiencies and save money."

Wong and his team have worked for several years to find the proper mix of active tungsten oxide nanoparticles and inert zirconia. The key is to disperse nanoparticles on the zirconia support structure at the right surface coverage. "It's the Goldilocks theory - not too much, not too little, but just right," he said. "We want to maximize the amount of these nanoparticles on the support without letting them touch.

"If we hit that sweet spot, we can see an increase of about five times in the efficiency of the catalyst. But this was very difficult to do."

No wonder. The team had to find the right chemistry, at the right high temperature, to attach particles a billionth of a meter wide to grains of zirconium oxide powder. With the right mix, the particles react with straight n-pentane molecules, rearranging their five carbon and 12 hydrogen atoms in a process called isomerization.

Now that the catalyst formula is known, making the catalyst should be straightforward for industry. "Because we're not developing a whole new process - just a component of it - refineries should be able to plug this into their systems without much disruption," Wong said.

Maximizing gasoline is important as the world develops new sources of energy, he said. "There's a lot of talk about biofuels as a significant contributor in the future, but we need a bridge to get there. Our discovery could help by stretching current fuel-production capabilities."

Co-authors of the paper are Nikolaos Soultanidis, a Rice chemical engineering graduate student in Wong's lab; Israel Wachs, Wu Zhou and Christopher Kiely of Lehigh University; Antonis Psarras and Eleni Iliopoulou of the Centre for Research and Technology Hellas; and Alejandro Gonzalez of the DCG Partnership, Pearland, Texas.

The National Science Foundation's Nanoscale Interdisciplinary Research Team Program supported the project, with additional support from SABIC Americas and 3M.



####

For more information, please click here

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Chemistry

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Density gradient ultracentrifugation for colloidal nanostructures separation and investigation June 5th, 2018

From Face Recognition to Phase Recognition: Neural Network Captures Atomic-Scale Rearrangements: Scientists use approach analogous to facial-recognition technology to track atomic-scale rearrangements relevant to phase changes, catalytic reactions, and more May 31st, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Possible Futures

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Academic/Education

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Environment

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Energy

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Automotive/Transportation

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project