Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers discover molecule that can starve cancer cells

This sketch (by Efraim Racker, the late Albert Einstein Professor of Biochemistry at Cornell) depicts a glutamine addict (symbolizing a cancer cell). Cornell researchers report on a molecule that can "block the addiction" and thus intervene against cancer.
This sketch (by Efraim Racker, the late Albert Einstein Professor of Biochemistry at Cornell) depicts a glutamine addict (symbolizing a cancer cell). Cornell researchers report on a molecule that can "block the addiction" and thus intervene against cancer.

Abstract:
While overcoming an addiction is usually the healthy choice, cancer cells' addiction to the amino acid glutamine is key to their vitality and growth. But Cornell researchers have discovered a molecule that can block cancer cells from using glutamine, thereby inhibiting their growth.

By Stephanie Specchio

Researchers discover molecule that can starve cancer cells

Ithaca, NY | Posted on September 17th, 2010

Researchers have long believed that starving cancer cells, little turbo-charged engines capable of metastasizing in even the most difficult of conditions, would break the glutamine addiction and help fight some cancers. But they have struggled for decades with how to accomplish this feat.

Now, they have discovered a molecule that does the job. Dubbed 968 by investigators, the molecule binds to the enzyme glutaminase, which inhibits cancer growth by blocking the cancer cells' utilization of glutamine.

"Cancer cells demand a tremendous amount of energy," said Richard Cerione, the Goldwin Smith Professor of Pharmacology and Chemical Biology in the Colleges of Veterinary Medicine and Arts and Sciences at Cornell and senior author of the research, which is the cover story in the Sept. 14 issue (Vol. 18:3) of Cancer Cell. "One of the key enzymes that fuels the process is glutaminase, whose activation in cancer cells can be blocked by the small molecule 968."

The finding could lead to a new class of drugs, capable of halting cancer progression without harming normal cell growth, he said.

"This is the rebirth of a century-old empirical observation -- that cancer cells have altered metabolisms -- and further development of the discovery in the 1970s and '80s that growth factor receptors and other signaling proteins are also altered in cancer cells," said Cerione. "This new information now offers exciting possibilities for designing strategies to stop tumor growth, to effectively reverse cellular transformation."

After discovering that 968 inhibited glutaminase and effectively shrunk tumor cells in mice, Cerione and his research team tested the molecule to understand its effects on non-cancerous cells. Because the energy needs of normal cells are different than those of cancer cells, normal cellular functions are much less reliant on elevated glutamine metabolism, which means that 968 only impacts cancerous cells, Cerione said.

"We have effectively stopped the growth of breast cancer cells in the lab without affecting normal mammary cells," said Cerione, who is now investigating the impact of 968 on other forms of cancer, including prostate, ovarian and pancreatic cell lines. "We've validated our target. The next step will be to commercialize a small class of molecules capable of stopping cancer cell growth in humans."

Cerione and colleagues are currently working with the KensaGroup, of Ithaca, N.Y., to do just that, although he is quick to add that his work is not done. He will continue to explore the effects of 968 and glutaminase on cancer cells to obtain detailed information on how cancer cells re-program their metabolism to sustain their malignant characteristics.

"Our research has highlighted a previously unrecognized connection between the cell's metabolic machinery and the signaling pathways and growth factor receptors that regulate cell growth," said Cerione. "However, I believe that it is reasonable to suspect there is a broader role for these connections between metabolism and cell signaling that may well impact other areas in biology and biomedicine."

Cornell co-authors of the research include postdoctoral associate Jianbin Wang (co-first author), and senior research associates Jon Erickson (co-first author), Kristin Wilson and Sekar Ramachandran.

The research was funded by the National Institutes of Health and the Susan G. Komen Foundation.

The glutamine addict

The cover article sketch (by Efraim Racker, the late Albert Einstein Professor of Biochemistry at Cornell and in whose honor the annual Racker Lecture is presented at Cornell every November, at which several Nobel laureates have lectured over the years, starting with James Watson of Watson and Crick double helix fame) depicts a glutamine addict (symbolizing a cancer cell). Cancer cells can become heavily reliant on glutamine metabolism to satisfy the biosynthetic and energy requirements for sustaining their malignant state. Thus, they are often referred to as being "glutamine addicted." Cornell researchers report here that they have discovered a compound that can "block the addiction" and thus intervene against cancer.

"What makes the cover especially neat is that Racker was a champion of the idea that cancer is about altered metabolism. He was one of my mentors, and we argued about this all of the time over our weekly Saturday lunches, after I first came to Cornell as a young assistant professor," says Professor Richard Cerione. "Thus, it has all come full circle as our work has led us to the importance of glutamine metabolism in cancer and so we thought it would be neat in a way to honor Ef's ideas with a cover that used one of his sketches (in addition to being an outstanding scientist, he was a prolific artist and his paintings hang in some of the leading research institutions throughout the world)."

####

For more information, please click here

Contacts:
Media Contact:
Joe Schwartz
(607) 254-6235

Cornell Chronicle:
Susan Lang
(607) 255-3613

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

SUNY Polytechnic Institute Hosts Massive Crowd of More Than 3,000 People Who Attended Community Day Activities Across New York State: CNSE’s ‘NANOvember’ kickoff event highlights New York State’s growing high-tech sector with open house events in Albany, Utica, and Rochester November 3rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Nanomedicine

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Announcements

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE