Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers discover molecule that can starve cancer cells

This sketch (by Efraim Racker, the late Albert Einstein Professor of Biochemistry at Cornell) depicts a glutamine addict (symbolizing a cancer cell). Cornell researchers report on a molecule that can "block the addiction" and thus intervene against cancer.
This sketch (by Efraim Racker, the late Albert Einstein Professor of Biochemistry at Cornell) depicts a glutamine addict (symbolizing a cancer cell). Cornell researchers report on a molecule that can "block the addiction" and thus intervene against cancer.

Abstract:
While overcoming an addiction is usually the healthy choice, cancer cells' addiction to the amino acid glutamine is key to their vitality and growth. But Cornell researchers have discovered a molecule that can block cancer cells from using glutamine, thereby inhibiting their growth.

By Stephanie Specchio

Researchers discover molecule that can starve cancer cells

Ithaca, NY | Posted on September 17th, 2010

Researchers have long believed that starving cancer cells, little turbo-charged engines capable of metastasizing in even the most difficult of conditions, would break the glutamine addiction and help fight some cancers. But they have struggled for decades with how to accomplish this feat.

Now, they have discovered a molecule that does the job. Dubbed 968 by investigators, the molecule binds to the enzyme glutaminase, which inhibits cancer growth by blocking the cancer cells' utilization of glutamine.

"Cancer cells demand a tremendous amount of energy," said Richard Cerione, the Goldwin Smith Professor of Pharmacology and Chemical Biology in the Colleges of Veterinary Medicine and Arts and Sciences at Cornell and senior author of the research, which is the cover story in the Sept. 14 issue (Vol. 18:3) of Cancer Cell. "One of the key enzymes that fuels the process is glutaminase, whose activation in cancer cells can be blocked by the small molecule 968."

The finding could lead to a new class of drugs, capable of halting cancer progression without harming normal cell growth, he said.

"This is the rebirth of a century-old empirical observation -- that cancer cells have altered metabolisms -- and further development of the discovery in the 1970s and '80s that growth factor receptors and other signaling proteins are also altered in cancer cells," said Cerione. "This new information now offers exciting possibilities for designing strategies to stop tumor growth, to effectively reverse cellular transformation."

After discovering that 968 inhibited glutaminase and effectively shrunk tumor cells in mice, Cerione and his research team tested the molecule to understand its effects on non-cancerous cells. Because the energy needs of normal cells are different than those of cancer cells, normal cellular functions are much less reliant on elevated glutamine metabolism, which means that 968 only impacts cancerous cells, Cerione said.

"We have effectively stopped the growth of breast cancer cells in the lab without affecting normal mammary cells," said Cerione, who is now investigating the impact of 968 on other forms of cancer, including prostate, ovarian and pancreatic cell lines. "We've validated our target. The next step will be to commercialize a small class of molecules capable of stopping cancer cell growth in humans."

Cerione and colleagues are currently working with the KensaGroup, of Ithaca, N.Y., to do just that, although he is quick to add that his work is not done. He will continue to explore the effects of 968 and glutaminase on cancer cells to obtain detailed information on how cancer cells re-program their metabolism to sustain their malignant characteristics.

"Our research has highlighted a previously unrecognized connection between the cell's metabolic machinery and the signaling pathways and growth factor receptors that regulate cell growth," said Cerione. "However, I believe that it is reasonable to suspect there is a broader role for these connections between metabolism and cell signaling that may well impact other areas in biology and biomedicine."

Cornell co-authors of the research include postdoctoral associate Jianbin Wang (co-first author), and senior research associates Jon Erickson (co-first author), Kristin Wilson and Sekar Ramachandran.

The research was funded by the National Institutes of Health and the Susan G. Komen Foundation.

The glutamine addict

The cover article sketch (by Efraim Racker, the late Albert Einstein Professor of Biochemistry at Cornell and in whose honor the annual Racker Lecture is presented at Cornell every November, at which several Nobel laureates have lectured over the years, starting with James Watson of Watson and Crick double helix fame) depicts a glutamine addict (symbolizing a cancer cell). Cancer cells can become heavily reliant on glutamine metabolism to satisfy the biosynthetic and energy requirements for sustaining their malignant state. Thus, they are often referred to as being "glutamine addicted." Cornell researchers report here that they have discovered a compound that can "block the addiction" and thus intervene against cancer.

"What makes the cover especially neat is that Racker was a champion of the idea that cancer is about altered metabolism. He was one of my mentors, and we argued about this all of the time over our weekly Saturday lunches, after I first came to Cornell as a young assistant professor," says Professor Richard Cerione. "Thus, it has all come full circle as our work has led us to the importance of glutamine metabolism in cancer and so we thought it would be neat in a way to honor Ef's ideas with a cover that used one of his sketches (in addition to being an outstanding scientist, he was a prolific artist and his paintings hang in some of the leading research institutions throughout the world)."

####

For more information, please click here

Contacts:
Media Contact:
Joe Schwartz
(607) 254-6235

Cornell Chronicle:
Susan Lang
(607) 255-3613

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Forceís 30-year plan seeks 'strategic agility' August 1st, 2014

Possible Futures

Air Forceís 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea Universityís Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Nanomedicine

Taking the guesswork out of cancer therapy: New molecular test kit predicts patientís survival and drug response August 1st, 2014

Arrowhead to Report Fiscal 2014 Third Quarter Financial Results- Conference Call Scheduled for Tuesday, August 12, 2014 - July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Zenosense, Inc. July 29th, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Forceís 30-year plan seeks 'strategic agility' August 1st, 2014

Nanobiotechnology

Taking the guesswork out of cancer therapy: New molecular test kit predicts patientís survival and drug response August 1st, 2014

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE