Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Microfluidic chip for discriminating bacteria

Abstract:
A new "on-chip" method for sorting and identifying bacteria has been created by biomedical engineers at Taiwan's National Cheng Kung University. The technique, developed by Hsien-Chang Chang, a professor at the Institute of Biomedical Engineering and the Institute of Nanotechnology and Microsystems Engineering, along with former graduate student I-Fang Cheng and their colleagues, is described in the AIP journal Biomicrofluidics.

Microfluidic chip for discriminating bacteria

Washington, DC | Posted on September 14th, 2010

Using roughened glass slides patterned with gold electrodes, the researchers created microchannels to sort, trap, and identify bacteria. The technique uses surface enhanced Raman spectroscopy. This type of spectroscopy, says Chang, "is based on the measurement of scattered light from the vibration energy levels of chemical bonds following excitation in a craggy metal surface, which enhances the vibration energy." Different components like proteins or other chemical components on the surface of bacteria become attached to the craggy gold zone; when excited, these components cause representative peaks at different wavelengths, creating spectral "fingerprints."

Although some species of bacteria could show very similar signatures because the components on their surfaces are almost the same, says Chang, bacteria from different genera are distinguishable using the technique.

"In the future, different species of fungi could also be sorted based on their different electrical or physical properties by optimizing conditions such as the flow rate, applied voltage, and frequency," he says. "This portable device could be used for preliminary screening for the pathogenic targets in bacteria-infected blood, urethral irritation, and of raw milk and for food monitoring."

The article, "A dielectrophoretic chip with a roughened metal surface for on-chip SERS analysis of bacteria" by I-Fang Cheng (National Cheng Kung University), Chi-Chang Lin (Tunghai University), Dong-Yi Lin and Hsien-Chang Chang (National Cheng Kung University) appears in the journal Biomicrofluidics. link.aip.org/link/biomgb/v4/i3/p034104/s1

Journalists may request a free PDF of this article by contacting

####

About Biomicrofluidics
Biomicrofluidics is an online open-access journal published by the American Institute of Physics to rapidly disseminate research in elucidating fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See: bmf.aip.org/

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

For more information, please click here

Contacts:
Jason Socrates Bardi

301-209-3091

Copyright © Biomicrofluidics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GWs new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Announcements

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanobiotechnology

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project