Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Epeius announces phase I/II trials of Rexin-G in chemo-resistant metastatic pancreatic cancer

Abstract:
Epeius Biotechnologies Corporation, a leader in the emerging field of targeted genetic medicine, reports the publication of a landmark paper in clinical oncology.

Epeius announces phase I/II trials of Rexin-G in chemo-resistant metastatic pancreatic cancer

San Marino, California | Posted on September 10th, 2010

Following up on its advanced US phase I/II clinical trials of Rexin-G in chemo-resistant metastatic pancreatic cancer molecule, which gained both Orphan Drug and FDA Fast Track Status, this new paper documents the molecular mechanisms-of-action of Rexin-G seen in the process of tumor eradication - revealing the "smoking gun" of precision, tumor-targeted killer gene delivery amidst a veritable "sea" of actively dying (apoptosing) tumor cells. Equally as important was the clinical finding that surgical oncologists were able to do more for cancer patients after the metastatic disease was brought under control by Rexin-G treatment.

Based on the adaptive Phase I/II study design, which included an FDA allowance for surgical intervention to be added to the treatment protocol in cases where repeated Rexin-G infusions had served to control the cancer and halt disease progression, the report describes the use of Rexin-G as both neoadjuvant therapy (before surgery) and as adjuvant therapy (after surgery) to prevent post-surgical spread and disease recurrence. Remarkably, the excised tumor(s) showed the process of Rexin-G accumulation within the tumors, as well as the molecular mechanisms of tumor cell destruction, with an unprecedented level of histological high-definition.

The landmark paper, published in the latest issue of Oncology Reports demonstrates the physical accumulation of the intravenous Rexin-G nano-medicine within the metastatic tumor prior to its surgical excision. It additionally reveals the selective accumulation of the Rexin-G nanoparticles on the surfaces of the target cells, i.e., pancreatic cancer cells and their proliferative vasculature, which is a distinctive property of the tumor-targeted nanotechnology platform. Using elegant immunohistochemistry to identify the process of active cell death (apoptosis) enforced by Rexin-G, the molecular mechanisms of precision tumor-targeting and selective cell death have never been more vividly displayed. It bears mentioning that the pancreatic cancer patient highlighted in this histological study is currently in surgical remission, with no new lesions during Rexin-G treatment and no disease recurrence going on six months after the Rexin-G / Surgical Excision / Rexin-G treatment combination.

####

For more information, please click here

Contacts:
475 Huntington Drive,
San Marino, California 91108
Tel: 626-441-6695
Fax: 626-441-6692

Copyright © Epeius Biotechnologies Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Possible Futures

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Nanomedicine

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Announcements

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Nanobiotechnology

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project