Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Slow light' on a chip holds promise for optical communications

Abstract:
A tiny optical device built into a silicon chip has achieved the slowest light propagation on a chip to date, reducing the speed of light by a factor of 1,200 in a study reported in Nature Photonics (published online September 5 and in the November print issue).

'Slow light' on a chip holds promise for optical communications

Santa Cruz, CA | Posted on September 6th, 2010

The ability to control light pulses on an integrated chip-based platform is a major step toward the realization of all-optical quantum communication networks, with potentially vast improvements in ultra-low-power performance. Holger Schmidt, professor of electrical engineering in the Baskin School of Engineering at the University of California, Santa Cruz, leads the team of researchers at UC Santa Cruz and Brigham Young University that developed the new device.

"Slow light and other quantum coherence effects have been known for quite awhile, but in order to use them in practical applications we have to be able to implement them on a platform that can be mass-produced and will work at room temperature or higher, and that's what our chips accomplish," Schmidt said.

Whereas optical fibers routinely transmit data at light speed, routing and data processing operations still require converting light signals to electronic signals. All-optical data processing will require compact, reliable devices that can slow, store, and process light pulses.

"The simplest example of how slow light can be used is to provide a data buffer or tunable signal delay in an optical network, but we are looking beyond that with our integrated photonic chip," Schmidt said.

The device relies on quantum interference effects in a rubidium vapor inside a hollow-core optical waveguide that is built into a silicon chip using standard manufacturing techniques. It builds on earlier work by Schmidt and his collaborators that enabled them to perform atomic spectroscopy on a chip (press.ucsc.edu/text.asp?pid=1356). The first author of the new paper is Bin Wu, a graduate student in electrical engineering at UCSC. The coauthors include John Hulbert, Evan Lunt, Katie Hurd, and Aaron Hawkins of Brigham Young University.

Several different techniques have been used to slow light to a crawl and even bring it to a complete halt for a few hundredths of a millisecond. Previously, however, systems based on quantum interference required low temperatures or laboratory setups too elaborate for practical use. In 2008, researchers at NTT Laboratories in Japan developed a specially structured silicon chip that could slow light pulses by a factor of 170. Called a photonic crystal waveguide, it has advantages for certain applications, but it does not produce the quantum effects of the atomic spectroscopy chip developed by Schmidt's group.

Those quantum effects produce not only slow light but other interactions between light and matter that raise the possibility of radically new optical devices for quantum computing and quantum communication systems, according to Schmidt. In addition, the system makes it easy to turn the effect on and off and tune it to the desired speed of light.

"By changing the power of a control laser, we can change the speed of light--just by turning the power control knob," he said.

The control laser modifies the optical properties of the rubidium vapor in the hollow-core waveguide. Under the combined action of two laser fields (control and signal), electrons in the rubidium atoms are transferred into a coherent superposition of two quantum states. In the strange world of quantum physics, they exist in two different states at the same time. One result is an effect known as electromagnetically induced transparency, which is key to producing slow light.

"Normally, the rubidium vapor absorbs the light from the signal laser, so nothing gets through. Then you turn on the control laser and boom, the material becomes transparent and the signal pulse not only makes it through, but it also moves significantly more slowly," Schmidt said.

This study is the first demonstration of electromagnetically induced transparency and slow light on a fully self-contained atomic spectroscopy chip.

"This has implications for looking at nonlinear optical effects beyond slow light," Schmidt said. "We can potentially use this to create all-optical switches, single-photon detectors, quantum memory devices, and other exciting possibilities."

This research was funded by the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation (NSF).

####

For more information, please click here

Contacts:
Tim Stephens

831-459-2495

Copyright © University of California, Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Quantum nanoscience

Graphene brings quantum effects to electronic circuits January 22nd, 2015

Nano-beaker offers insight into the condensation of atoms January 21st, 2015

Atoms can be in 2 places at the same time: Researchers of the University of Bonn have shown that cesium atoms do not follow well-defined paths January 20th, 2015

Two or one splashing? It's different! Physicist at the University of Bonn observe light-matter interaction with two atoms for the first time January 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE