Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NASA Funds Development of Nanoscale Materials for High Energy Density Lithium-Ion Batteries

Abstract:
NanoEngineers at the University of California, San Diego are designing new types of lithium-ion (Li-ion) batteries that could be used in a variety of NASA space exploration projects - and in a wide range of transportation and consumer applications.

NASA Funds Development of Nanoscale Materials for High Energy Density Lithium-Ion Batteries

San Diego, CA | Posted on August 31st, 2010

NEI Corporation and UC San Diego recently won a Phase II Small Business Technology Transfer contract from NASA to develop and implement high energy density cathode materials for lithium batteries.

NEI is the prime contractor on the NASA contract and Shirley Meng, a professor in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering, is a subcontractor. The nearly $600,000 program builds upon expertise in the UC San Diego Department of NanoEngineering in modeling new nanocomposite structures for next generation electrode materials, and NEI's capability to reproducibly synthesize electrode materials at the nanoscale.

Battery Applications

Advanced Li-ion battery systems with high energy and power densities - and the ability to operate at low temperatures - are required for NASA's exploration missions. The James Webb Space Telescope (JWST), Mars Atmospheric and Volatile Evolution (MAVEN), deep drilling equipment and Astrobiology Field Laboratory on Mars, International X-ray Observatory (IXO), and extravehicular activities are potential space applications. Advanced lithium-ion battery packs could also be used in hybrid electric vehicles, consumer electronics, medical devices, electric scooters, and a variety of military applications.

Designing Batteries from the Atom Up

The UC San Diego NanoEngineers will help guide development of the new batteries using advanced modeling techniques. "We will give NEI candidate materials that we think will have optimal battery properties, and they will make the materials using their proprietary technology," said professor Shirley Meng, who leads the Laboratory for Energy Storage and Conversion in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering.

The outcome of the program will be a commercially useable cathode material with exceptionally high capacity - more than 250 milliAmp-Hours per gram (250 mAh/g) at about 4V, which translates to an energy density of more than 1000 Watt-hours per kilogram (Wh/kg). This represents a factor of two enhancement in energy density over lithium cobalt oxide, which is the most commonly used cathode material at the present time. NEI expects to have sample cathode materials for testing by interested end-users by the middle of 2011.

The UC San Diego NanoEngineers will design the candidate cathode materials using "first principles calculations" - a quantum-mechanical based calculation method that enables the engineers to predict electrochemical properties of the batteries prior to synthesis.

One aspect of the batteries the engineers will predict is the structural stability of the electrode materials as the lithium concentration fluctuates during charge and discharge. Enhancing structural stability is critical for extending the life of rechargeable batteries.

"We are pleased to be working closely with Shirley Meng on this exciting materials manufacturing project. The shortest path to developing new materials and implementing them in practical applications is for materials manufacturers to work synergistically with researchers like Prof. Meng, who can create new structures through computation and modeling," said Dr. Ganesh Skandan, CEO NEI Corporation.

"This work, which could lead to new batteries for space exploration and beyond, is just one example of the high impact research being done in the Department of NanoEngineering," said Kenneth Vecchio, Professor and Chair of the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering.

Batteries for hybrid electric vehicles or full electric cars

Work in the Meng lab on next-generation batteries extends beyond the collaboration with NEI.

"In my group, we are very interested in batteries that will be used in future transportation systems. Lithium batteries for plug-in hybrid electric vehicles or full electric cars have a lot of potential, but we have to work very hard to decrease the dollar per kilowatt hour numbers," said Meng, whose research group at UC San Diego is funded through grants from the U.S. Department of Energy (DOE) and other government and industry sources.

The new Phase II Small Business Technology Transfer contract follows a similar Phase I contract awarded to the same industry-university team.

"If we are going to use large scale batteries for applications such as electric cars, it is not acceptable to replace batteries every three years. The cycle life of the batteries becomes very important and this is a challenge to address. How do we make batteries last for ten years instead of three years? We have to look for other options for the structure of the battery materials that are more robust," said Meng.

The Cathode Bottleneck

The positive electrode in lithium-ion batteries - the cathode - is one battery component ripe for additional improvements.

"The cathode is a performance bottleneck for modern lithium batteries that power consumer electronics like PDAs, mp3 players and laptops," said Meng.

"There is plenty of room for improving energy density in lithium batteries by at least another 50 percent. The problem is making these improvements under the constraints of cost. That is the main obstacle. We are looking at dollars per kilowatt hour. We need to make sure the raw materials are low cost, the synthesis process is low cost, and the packaging of the battery is low cost," said Meng.

Moving to Manganese

The lithium ion batteries Meng's group is working on are primarily manganese based, while most of the lithium batteries in the marketplace today are cobalt based.

"Manganese is much cheaper than cobalt, and manganese is more abundant," said Meng. "Also, we are focusing on a different material structure for the batteries, one that is easier to make and could lead to cheaper synthesis."

The nanoengineers in the Meng lab will be using first principles to model new nanocomposite structures for the generation of cathode materials with exceptionally high energy density.

"We explore the electrochemical properties of the batteries we design and develop to see if the experimentally measured properties match with our predictions," said Meng. "We use this feedback mechanism to improve our computational modeling."

####

For more information, please click here

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Academic/Education

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Global 450 consortium announces new general manager of internal operations: TSMC’s Cheng-Chung Chien Receives Unanimous Support, Brings History of Innovation and Efficiency to Global Consortium of Companies Driving Industry Transition to 450mm Wafer Technology March 26th, 2014

NanoTecNexus to Host "Chemistry of Wine" Fundraiser in Support of STEM Education - Collaborations Key to Success - March 20th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Military

'Exotic' material is like a switch when super thin April 18th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Automotive/Transportation

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Heat-conducting polymer cools hot electronic devices at 200 degrees C March 31st, 2014

Aerospace/Space

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

NASA Engineers Prepare Game Changing Cryotank for Testing April 9th, 2014

Space Industry Leaders Countdown To Space Tech Expo 2014 – Opening Next Week: Space Tech Expo and Conference 2014 opens its doors at the Long Beach Convention Center, Long Beach April 1 – 3 March 30th, 2014

Micro systems with big commercial potential featured in SPIE journal: Special section in Journal of Micro/Nanolithography, MEMS, and MOEMS highlights emerging MOEMS technologies March 25th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

IDTechEx Printed Electronics Europe 2014 Award Winners April 1st, 2014

Dais Analytic Wins SBIR Grant: Dais Analytic Receives US Army Small Business Innovation Research Grant to Further Its Demonstrated Successes in Cleaning Most Forms of Wastewater March 28th, 2014

Scientists develop world’s first light-activated antimicrobial surface that also works in the dark March 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE