Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Designer optoelectronics – quantum mechanics for new materials

Abstract:
European researchers have combined computer modelling of quantum mechanics and precision fabrication processes to create novel transparent conductive oxides made to order for a wide range of scientific and consumer applications.

Designer optoelectronics – quantum mechanics for new materials

EU | Posted on August 30th, 2010

Imagine specifying exactly how you want a new material to behave, handing those specs to an engineer, and getting back a brand-new material with exactly the qualities you need.

That's what the EU-funded project NATCO (for Novel Advanced Transparent Conductive Oxides) set out to do. They designed and developed novel transparent conductive oxides (TCOs) to exacting specifications by applying quantum mechanics to predict a material's optical and electronic properties, fabricating it, and checking their results experimentally.

The results? Completely new TCOs with a wide range of potential applications in sensors, solar cells, smart windows, and dozens of other scientific, commercial and consumer products.

"In the field of optoelectronics, there's a great need to find better and less costly materials," says Guy Garry, coordinator of the NATCO project. "The route we took was first to make calculations to find the best way to get the properties that we needed. When we fabricated these materials, we found that their properties were the same as we had calculated."

This rational design process - using first principles to calculate the conductivity and transparency of novel materials before fabricating them - allowed the researchers to develop new TCOs with enhanced performance rapidly and efficiently.

"We were able to make these calculations very quickly, which allowed us to enhance existing properties and find new properties," says Dr Garry.

Brand new optoelectronic material
TCOs - materials that combine transparency and conductivity, qualities that are not usually found together - have multiple applications. As sensors, photovoltaics, light emitting devices and electronically controllable films, they are found in scientific instruments, DVDs, digital cameras, mobile phones, computer displays and hundreds of other products.

Until recently, most TCOs relied on a material called ITO, an oxide of indium which is doped - slightly modified - by the addition of a small quantity of tin. ITOs have proved useful, but, Dr Garry says, suffer from two drawbacks. Their transparency is not very good, especially in the near-infrared range, and indium is in short supply and very expensive.

The NATCO team decided to explore a completely different material, strontium cuprate doped with varying amounts of barium. Copper, barium and strontium are far more abundant and much less expensive than indium.

Extensive calculations applying quantum mechanics predicted that, by doping strontium cuprate with a few percent by weight of barium, the researchers could create precisely the materials they wanted, combining good electrical conductivity and optical transparency.

Fabricating the new materials was a challenge. At first the materials were fabricated in the form of bulk ceramics and then, for actual applications, thin layers were deposited on suitable substrates.

In the end, the researchers settled on two deposition techniques - pulsed laser deposition (PLD) and metal organic chemical deposition (MOCVD).

In PLD, a burst of laser light vaporises the material to be deposited, creating a thin film on a glass or silicon surface. It allows precise control, but can't be used on large surfaces.

MOCVD uses organic chemistry to create gasses that deposit the desired material onto a surface. It is a more complicated procedure, but has the advantage of being able to be scaled up to coat large surfaces.

Once they had fabricated the materials, the researchers could test how well their electrical and optical properties matched the predicted values. "This was the first time that this kind of work was done on TCOs," says Dr Garry.

Multiple applications in the works
Today, one of the most promising applications of NATCO's new TCOs is in the area of exquisitely sensitive biosensors. These devices, with the tongue-twisting title of Elecro-Chemical Optical Waveguide Light-mode Spectroscopy Sensors, are fabricated by the Hungarian consortium partner MicroVacuum. They work by measuring how light is bent as it passes through a very thin optical wave guiding layer.

When target molecules bind to the surface of the detector, they change the TCO´s refractive index, which in turn changes how light passes through the waveguide. Applying a varying electric field through the layer provides further information about the molecules.

"We got very good results on these devices using our strontium cuprate materials," says Dr Garry. He foresees a wide range of applications for these sensors, especially in the area of proteomics.

The project's commercial and academic partners are pursuing other applications for NATCO's designer TCOs, including more efficient solar cells, smart windows, novel light sources, and materials to modulate laser light.

For Dr Garry, the results of the project's first-principles modelling and precision fabrication approach are so encouraging that he plans to apply them to more challenging problems.

"We'd like to use this route to study more complicated materials," he says. "For example, to look at ferro-electricity to see why some materials with the same structure are ferro-electric while others are not."

The NATCO project received funding from the FET-Open strand of the EU's Sixth Framework Programme for research.

####

For more information, please click here

Copyright © ITC Results

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Sensors

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Solar/Photovoltaic

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Shiny quantum dots brighten future of solar cells: Photovoltaic solar-panel windows could be next for your house April 14th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Quantum nanoscience

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Quantum Photon Properties Revealed in Another Particle—the Plasmon April 5th, 2014

Notre Dame researchers provide new insights into quantum dynamics and quantum chaos April 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE