Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Designer optoelectronics – quantum mechanics for new materials

Abstract:
European researchers have combined computer modelling of quantum mechanics and precision fabrication processes to create novel transparent conductive oxides made to order for a wide range of scientific and consumer applications.

Designer optoelectronics – quantum mechanics for new materials

EU | Posted on August 30th, 2010

Imagine specifying exactly how you want a new material to behave, handing those specs to an engineer, and getting back a brand-new material with exactly the qualities you need.

That's what the EU-funded project NATCO (for Novel Advanced Transparent Conductive Oxides) set out to do. They designed and developed novel transparent conductive oxides (TCOs) to exacting specifications by applying quantum mechanics to predict a material's optical and electronic properties, fabricating it, and checking their results experimentally.

The results? Completely new TCOs with a wide range of potential applications in sensors, solar cells, smart windows, and dozens of other scientific, commercial and consumer products.

"In the field of optoelectronics, there's a great need to find better and less costly materials," says Guy Garry, coordinator of the NATCO project. "The route we took was first to make calculations to find the best way to get the properties that we needed. When we fabricated these materials, we found that their properties were the same as we had calculated."

This rational design process - using first principles to calculate the conductivity and transparency of novel materials before fabricating them - allowed the researchers to develop new TCOs with enhanced performance rapidly and efficiently.

"We were able to make these calculations very quickly, which allowed us to enhance existing properties and find new properties," says Dr Garry.

Brand new optoelectronic material
TCOs - materials that combine transparency and conductivity, qualities that are not usually found together - have multiple applications. As sensors, photovoltaics, light emitting devices and electronically controllable films, they are found in scientific instruments, DVDs, digital cameras, mobile phones, computer displays and hundreds of other products.

Until recently, most TCOs relied on a material called ITO, an oxide of indium which is doped - slightly modified - by the addition of a small quantity of tin. ITOs have proved useful, but, Dr Garry says, suffer from two drawbacks. Their transparency is not very good, especially in the near-infrared range, and indium is in short supply and very expensive.

The NATCO team decided to explore a completely different material, strontium cuprate doped with varying amounts of barium. Copper, barium and strontium are far more abundant and much less expensive than indium.

Extensive calculations applying quantum mechanics predicted that, by doping strontium cuprate with a few percent by weight of barium, the researchers could create precisely the materials they wanted, combining good electrical conductivity and optical transparency.

Fabricating the new materials was a challenge. At first the materials were fabricated in the form of bulk ceramics and then, for actual applications, thin layers were deposited on suitable substrates.

In the end, the researchers settled on two deposition techniques - pulsed laser deposition (PLD) and metal organic chemical deposition (MOCVD).

In PLD, a burst of laser light vaporises the material to be deposited, creating a thin film on a glass or silicon surface. It allows precise control, but can't be used on large surfaces.

MOCVD uses organic chemistry to create gasses that deposit the desired material onto a surface. It is a more complicated procedure, but has the advantage of being able to be scaled up to coat large surfaces.

Once they had fabricated the materials, the researchers could test how well their electrical and optical properties matched the predicted values. "This was the first time that this kind of work was done on TCOs," says Dr Garry.

Multiple applications in the works
Today, one of the most promising applications of NATCO's new TCOs is in the area of exquisitely sensitive biosensors. These devices, with the tongue-twisting title of Elecro-Chemical Optical Waveguide Light-mode Spectroscopy Sensors, are fabricated by the Hungarian consortium partner MicroVacuum. They work by measuring how light is bent as it passes through a very thin optical wave guiding layer.

When target molecules bind to the surface of the detector, they change the TCO´s refractive index, which in turn changes how light passes through the waveguide. Applying a varying electric field through the layer provides further information about the molecules.

"We got very good results on these devices using our strontium cuprate materials," says Dr Garry. He foresees a wide range of applications for these sensors, especially in the area of proteomics.

The project's commercial and academic partners are pursuing other applications for NATCO's designer TCOs, including more efficient solar cells, smart windows, novel light sources, and materials to modulate laser light.

For Dr Garry, the results of the project's first-principles modelling and precision fabrication approach are so encouraging that he plans to apply them to more challenging problems.

"We'd like to use this route to study more complicated materials," he says. "For example, to look at ferro-electricity to see why some materials with the same structure are ferro-electric while others are not."

The NATCO project received funding from the FET-Open strand of the EU's Sixth Framework Programme for research.

####

For more information, please click here

Copyright © ITC Results

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Sensors

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Announcements

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Solar/Photovoltaic

Novel nanostructures for efficient long-range energy transport August 21st, 2015

Charge transport in hybrid silicon solar cells August 17th, 2015

Nano Electrolyte Additives Increase Efficiency of Solar Cells August 10th, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Quantum nanoscience

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic