Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New measurement explores fine details of proton structure

During the experiment, the probing electron seems to give all of its momentum
to one quark, which then passes part of it on to the proton's other quarks.
During the experiment, the probing electron seems to give all of its momentum to one quark, which then passes part of it on to the proton's other quarks.

Abstract:
A new, high-precision measurement of the proton's hidden inner structure carried out at DOE's Jefferson Lab has yielded a surprising result.

New measurement explores fine details of proton structure

Newport News, VA | Posted on August 30th, 2010

A collaboration of scientists measured the proton's form factors, quantities that describe the shape and size of the space over which the electric charge and electric current is spread.

The proton gets its charge from its building blocks: three quarks. The electric charge form factor, GEp, is connected to the electric field generated by the quarks' electric charges. As the charged quarks move around, they generate an electric current, which creates a magnetic field. The magnetic form factor, GMp, is therefore related to the quarks' movement.

The experiment set out to measure the ratio of the two form factors:
GEp/GMp. Previous measurements by the collaboration found that the electric charge form factor decreases significantly faster than the magnetic form factor. The new experiment measured the smallest value of the ratio by 50 percent.

In the experiment, the proton was probed with high-energy electrons from Jefferson Lab's CEBAF accelerator. The angle at which the electrons leave the proton was then measured, determining the so- called momentum transfer.

The experimenters found that the decrease revealed in previous measurements shows indications of slowing down. This slowing could indicate that the momentum transfer is approaching the region in which the electron probe is no longer probing the proton as a whole, but is beginning to study the individual quarks.

In addition, the researchers suspect they are also seeing a special circumstance of how the electron probe is interacting with the proton and its quarks. The electron carries enough energy to shatter the proton, but intact protons are detected. The electron seems to give its momentum to one quark, which then passes part of it on to the proton's other quarks.

The result was recently published in the journal Physical Review Letters.

####

For more information, please click here

Contacts:
Kandice Carter
757.269.7263

Copyright © Jefferson Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Research partnerships

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE