Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New measurement explores fine details of proton structure

During the experiment, the probing electron seems to give all of its momentum
to one quark, which then passes part of it on to the proton's other quarks.
During the experiment, the probing electron seems to give all of its momentum to one quark, which then passes part of it on to the proton's other quarks.

Abstract:
A new, high-precision measurement of the proton's hidden inner structure carried out at DOE's Jefferson Lab has yielded a surprising result.

New measurement explores fine details of proton structure

Newport News, VA | Posted on August 30th, 2010

A collaboration of scientists measured the proton's form factors, quantities that describe the shape and size of the space over which the electric charge and electric current is spread.

The proton gets its charge from its building blocks: three quarks. The electric charge form factor, GEp, is connected to the electric field generated by the quarks' electric charges. As the charged quarks move around, they generate an electric current, which creates a magnetic field. The magnetic form factor, GMp, is therefore related to the quarks' movement.

The experiment set out to measure the ratio of the two form factors:
GEp/GMp. Previous measurements by the collaboration found that the electric charge form factor decreases significantly faster than the magnetic form factor. The new experiment measured the smallest value of the ratio by 50 percent.

In the experiment, the proton was probed with high-energy electrons from Jefferson Lab's CEBAF accelerator. The angle at which the electrons leave the proton was then measured, determining the so- called momentum transfer.

The experimenters found that the decrease revealed in previous measurements shows indications of slowing down. This slowing could indicate that the momentum transfer is approaching the region in which the electron probe is no longer probing the proton as a whole, but is beginning to study the individual quarks.

In addition, the researchers suspect they are also seeing a special circumstance of how the electron probe is interacting with the proton and its quarks. The electron carries enough energy to shatter the proton, but intact protons are detected. The electron seems to give its momentum to one quark, which then passes part of it on to the proton's other quarks.

The result was recently published in the journal Physical Review Letters.

####

For more information, please click here

Contacts:
Kandice Carter
757.269.7263

Copyright © Jefferson Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Physics

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project