Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New measurement explores fine details of proton structure

During the experiment, the probing electron seems to give all of its momentum
to one quark, which then passes part of it on to the proton's other quarks.
During the experiment, the probing electron seems to give all of its momentum to one quark, which then passes part of it on to the proton's other quarks.

Abstract:
A new, high-precision measurement of the proton's hidden inner structure carried out at DOE's Jefferson Lab has yielded a surprising result.

New measurement explores fine details of proton structure

Newport News, VA | Posted on August 30th, 2010

A collaboration of scientists measured the proton's form factors, quantities that describe the shape and size of the space over which the electric charge and electric current is spread.

The proton gets its charge from its building blocks: three quarks. The electric charge form factor, GEp, is connected to the electric field generated by the quarks' electric charges. As the charged quarks move around, they generate an electric current, which creates a magnetic field. The magnetic form factor, GMp, is therefore related to the quarks' movement.

The experiment set out to measure the ratio of the two form factors:
GEp/GMp. Previous measurements by the collaboration found that the electric charge form factor decreases significantly faster than the magnetic form factor. The new experiment measured the smallest value of the ratio by 50 percent.

In the experiment, the proton was probed with high-energy electrons from Jefferson Lab's CEBAF accelerator. The angle at which the electrons leave the proton was then measured, determining the so- called momentum transfer.

The experimenters found that the decrease revealed in previous measurements shows indications of slowing down. This slowing could indicate that the momentum transfer is approaching the region in which the electron probe is no longer probing the proton as a whole, but is beginning to study the individual quarks.

In addition, the researchers suspect they are also seeing a special circumstance of how the electron probe is interacting with the proton and its quarks. The electron carries enough energy to shatter the proton, but intact protons are detected. The electron seems to give its momentum to one quark, which then passes part of it on to the proton's other quarks.

The result was recently published in the journal Physical Review Letters.

####

For more information, please click here

Contacts:
Kandice Carter
757.269.7263

Copyright © Jefferson Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Physics

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Announcements

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic