Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A new generation of power: Hi-tech rechargeable batteries developed for military

High-performance batteries could soon be woven into fabrics such as military uniforms to provide rechargeable clothing.  Credit: Craig DeBourbon
High-performance batteries could soon be woven into fabrics such as military uniforms to provide rechargeable clothing. Credit: Craig DeBourbon

Abstract:
Scientists reported progress today in using a common virus to develop improved materials for high-performance, rechargeable lithium-ion batteries that could be woven into clothing to power portable electronic devices. They discussed development of the new materials for the battery's cathode, or positive electrode, at the 240th National Meeting of the American Chemical Society (ACS), being held here this week.

A new generation of power: Hi-tech rechargeable batteries developed for military

Washington, DC | Posted on August 27th, 2010

These new power sources could in the future be woven into fabrics such as uniforms or ballistic vests, and poured or sprayed into containers of any size and shape, said Mark Allen, Ph.D., who presented the report. He is a postdoc in Angela Belcher's group at the Massachusetts Institute of Technology (MIT). These conformable batteries could power smart phones, GPS units, and other portable electronic devices.

"We're talking about fabrics that also are batteries," Allen said. "The batteries, once woven into clothing, could provide power for a range of high-tech devices, including handheld radios, GPS devices and personal digital assistants. They could also be used in everyday cell phones and smart phones."

Batteries produce electricity by converting chemical energy into electrical energy using two electrodes — an anode and cathode — separated by an electrolyte. At the ACS meeting, Allen described development of new cathodes made from an iron-fluoride material that could soon produce lightweight and flexible batteries with minimal loss of power, performance, or chargeability compared to today's rechargeable power sources.

Allen has extended ground-breaking work done last year by MIT scientist Angela Belcher and her colleagues, who were the first to engineer a virus as a biotemplate for preparing lithium ion battery anodes and cathodes. The virus, called M13 bacteriophage, consists of an outer coat of protein surrounding an inner core of genes. It infects bacteria and is harmless to people.

"Using M13 bacteriophage as a template is an example of green chemistry, an environmentally friendly method of producing the battery," Allen said. "It enables the processing of all materials at room temperature and in water." And these materials, he said, should be less dangerous than those used in current lithium-ion batteries because they produce less heat, which reduces flammability risks.

The Belcher Biomaterials group is in the beginning stages of testing and scaling up the virus-enabled battery materials, which includes powering unmanned aerial vehicles for surveillance operations. Making light-weight and long-lasting batteries that could result in rechargeable clothing would have several advantages for both military personnel and civilians, Allen added.

"Typical soldiers have to carry several pounds of batteries. But if you could turn their clothing into a battery pack, they could drop a lot of weight. The same could be true for frequent business travellers ¯ the road warriors ¯ who lug around batteries and separate rechargers for laptop computers, cell phones, and other devices. They could shed some weight."

####

About American Chemical Society
The American Chemical Society is a non-profit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042
617-954-3522 (During the meeting)

Michael Woods

202-872-6293
617-954-3522 (During the meeting)
American Chemical Society

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Military

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Nexeon Attracts ex-Nokia Product Executive to its Board of Directors December 15th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Lengthening the life of high capacity silicon electrodes in rechargeable lithium batteries: Novel rubber-like coating could lead to longer lasting batteries December 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE