Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Medicine reaches the target with the help of magnets

Professor Maria Kempe
Professor Maria Kempe

Abstract:
If a drug can be guided to the right place in the body, the treatment is more effective and there are fewer side-effects. Researchers at Lund University in Sweden have now developed magnetic nanoparticles that can be directed to metallic implants such as artificial knee joints, hip joints and stents in the coronary arteries.

Medicine reaches the target with the help of magnets

Sweden | Posted on August 26th, 2010

Associate Professor Maria Kempe, her brother and colleague Dr Henrik Kempe and members of staff at Skåne University Hospital have shown that the principle works in animal experiments.

They have succeeded in attaching a clot-dissolving drug to the nanoparticles and, with the help of magnets, have directed the particles to a blood clot in a stent in the heart to dissolve it. Thus the nanoparticles have been able to stop an incipient heart attack.

A stent is a tube-shaped metal net used to treat narrowing of the coronary arteries. First the artery is expanded using a balloon catheter, then a stent is inserted to keep the artery open. However, the method is not without problems: depending on the type of stent inserted, the cells of the artery wall can grow and again obstruct the artery or a blood clot can develop in the stent.

In the Lund researchers' experiments, the nanoparticles were coated with a drug used to treat blood clots. The particles could also carry other drugs, e.g. drugs to stop the cell growth that makes an artery become narrower.

"They could also carry antibiotics to treat an infection developed after insertion of an implant. We have developed polymer materials that can be loaded with antibiotics - these could produce interesting results in this context", says Maria Kempe.

Guiding drug-loaded magnetic particles using a magnet outside the body is not a new idea. However, previous attempts have failed for various reasons: it has only been possible to reach the body's superficial tissue and the particles have often obstructed the smallest blood vessels.

The Lund researchers' attempt has succeeded partly because nanotechnology has made the particles tiny enough to pass through the smallest arteries and partly because the target has been a metallic stent. When the stent is placed in a magnetic field, the magnetic force becomes sufficiently strong to attract the magnetic nanoparticles. For the method to work the patient therefore has to have an implant containing a magnetic metal.

"It takes many years to develop a treatment method that can be used on patients. But the good initial results make us hopeful", says Maria Kempe.

Journal article

An article about the results, entitled ‘The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy', has recently been published in the journal Biomaterials. The article can be found on www.sciencedirect.com - enter Maria Kempe in the Author search field.

Moving picture

A 15 second clip (no sound) illustrating a blood vessel with a stent and nanoparticles passing by in the blood or being pulled to the stent by magnets.

Visit www.lu.se/upload/Englishsite/Magnetiska%20nanopartikar.avi

####

For more information, please click here

Contacts:
Maria Kempe
+46 (0)46 222 98 57
+46 (0)70 222 08 57

Copyright © Lund University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Nanomedicine

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Nanobiotechnology

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE