Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Evolution writ small

Abstract:
Rice study measures physical effects of evolution at molecular scale

Evolution writ small

Houston, TX | Posted on August 26th, 2010

A unique experiment at Rice University that forces bacteria into a head-to-head competition for evolutionary dominance has yielded new insights about the way Darwinian selection plays out at the molecular level. An exacting new analysis of the experiment has revealed precisely how specific genetic mutations impart a physical edge in the competition for survival.

The new research, which could lead to more effective strategies to combat antibiotic drug resistance, was the most downloaded article this month in the journal Molecular Systems Biology.

The research builds upon an ingenious 2005 study involving bacteria called "thermophiles," which thrive at high temperatures. Researchers in the laboratory of Rice biochemist Yousif Shamoo "knocked out" a key gene that allowed the thermophiles to make energy at high temperatures. These crippled versions of the bacteria were then grown inside fermentors for several weeks. Each day, the temperature of the fermentors was increased. As a result, the bacteria were forced to either starve or adapt to survive at high temperature.

Of the hundreds of possible mutations, only five proved successful in allowing the cells to adapt and survive at high temperature. Each of these had mutations in a gene that creates a key enzyme that helps make energy at high temperature. Each of the five made a slightly different version of the enzyme.

"One of these five eventually won out entirely and drove all the others to extinction," said Shamoo, associate professor of biochemistry and cell biology and director of Rice's Institute of Biosciences and Bioengineering. "The question is what physical advantage did that particular mutant have? What were the precise physical changes to the enzyme that allowed that strain to outcompete its cousins?"

Finding the answer to that question was painstaking. While the genetic mutations were known from the earlier study, it fell to graduate student Matt Peña to find out how small changes in the DNA structure of the bacteria translated into specific enzymatic changes. He found that adaptation depended critically on simultaneously keeping the enzyme working while also increasing its resistance to inactivation as the temperatures increased.

He found that versions of the enzyme -- which is a specific kind of protein -- that became inactive were also subject to protein misfolding. In humans, an inability to maintain properly folded and active proteins has been linked to several human diseases, including Alzheimer's.

"Studies like this can help us understand the physical basis for these kinds of diseases, and they can give us a better understanding for the molecular basis for adaptation," Shamoo said. "For example, what we learn from these thermophiles carries over into our work on drug-resistant bacteria because the principles of adaptation are the same no matter whether you're studying temperature, pH, antibiotic resistance or whatever," he said.

Shamoo's lab won funding from the National Institutes of Health in 2009 to study how bacteria evolve antibiotic resistance. One of the ultimate goals of the project is to predict how evolution will play out so that drugmakers can head off resistance before it arises.

"With the thermophile study we've shown that it is possible to build a fitness function -- a mathematical expression -- that translates enzyme performance into a specific measure of competitive advantage," Shamoo said. "That's important because if you can't do that for one protein of interest, then there's no way you're going to be able to do it for a more complicated problem like antibiotic resistance, which involves simultaneous mutations to more than one gene."

Co-authors of the new research paper include Milya Davlieva, research scientist; Matthew Bennett, assistant professor of biochemistry and cell biology; and John Olson, the Ralph and Dorothy Looney Professor of Biochemistry and Cell Biology at Rice. The research was funded by the National Science Foundation, the National Institutes of Health and the Welch Foundation.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Academic/Education

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nanobiotechnology

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Nanoscale assembly line August 29th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Research partnerships

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE