Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Evolution writ small

Abstract:
Rice study measures physical effects of evolution at molecular scale

Evolution writ small

Houston, TX | Posted on August 26th, 2010

A unique experiment at Rice University that forces bacteria into a head-to-head competition for evolutionary dominance has yielded new insights about the way Darwinian selection plays out at the molecular level. An exacting new analysis of the experiment has revealed precisely how specific genetic mutations impart a physical edge in the competition for survival.

The new research, which could lead to more effective strategies to combat antibiotic drug resistance, was the most downloaded article this month in the journal Molecular Systems Biology.

The research builds upon an ingenious 2005 study involving bacteria called "thermophiles," which thrive at high temperatures. Researchers in the laboratory of Rice biochemist Yousif Shamoo "knocked out" a key gene that allowed the thermophiles to make energy at high temperatures. These crippled versions of the bacteria were then grown inside fermentors for several weeks. Each day, the temperature of the fermentors was increased. As a result, the bacteria were forced to either starve or adapt to survive at high temperature.

Of the hundreds of possible mutations, only five proved successful in allowing the cells to adapt and survive at high temperature. Each of these had mutations in a gene that creates a key enzyme that helps make energy at high temperature. Each of the five made a slightly different version of the enzyme.

"One of these five eventually won out entirely and drove all the others to extinction," said Shamoo, associate professor of biochemistry and cell biology and director of Rice's Institute of Biosciences and Bioengineering. "The question is what physical advantage did that particular mutant have? What were the precise physical changes to the enzyme that allowed that strain to outcompete its cousins?"

Finding the answer to that question was painstaking. While the genetic mutations were known from the earlier study, it fell to graduate student Matt Peņa to find out how small changes in the DNA structure of the bacteria translated into specific enzymatic changes. He found that adaptation depended critically on simultaneously keeping the enzyme working while also increasing its resistance to inactivation as the temperatures increased.

He found that versions of the enzyme -- which is a specific kind of protein -- that became inactive were also subject to protein misfolding. In humans, an inability to maintain properly folded and active proteins has been linked to several human diseases, including Alzheimer's.

"Studies like this can help us understand the physical basis for these kinds of diseases, and they can give us a better understanding for the molecular basis for adaptation," Shamoo said. "For example, what we learn from these thermophiles carries over into our work on drug-resistant bacteria because the principles of adaptation are the same no matter whether you're studying temperature, pH, antibiotic resistance or whatever," he said.

Shamoo's lab won funding from the National Institutes of Health in 2009 to study how bacteria evolve antibiotic resistance. One of the ultimate goals of the project is to predict how evolution will play out so that drugmakers can head off resistance before it arises.

"With the thermophile study we've shown that it is possible to build a fitness function -- a mathematical expression -- that translates enzyme performance into a specific measure of competitive advantage," Shamoo said. "That's important because if you can't do that for one protein of interest, then there's no way you're going to be able to do it for a more complicated problem like antibiotic resistance, which involves simultaneous mutations to more than one gene."

Co-authors of the new research paper include Milya Davlieva, research scientist; Matthew Bennett, assistant professor of biochemistry and cell biology; and John Olson, the Ralph and Dorothy Looney Professor of Biochemistry and Cell Biology at Rice. The research was funded by the National Science Foundation, the National Institutes of Health and the Welch Foundation.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Nanobiotechnology

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

Research partnerships

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE