Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SU research team uses nanobiotechnology-manipulated light particles to accelerate algae growth

Abstract:
Scientists and engineers seek to meet three goals in the production of biofuels from non-edible sources such as microalgae: efficiency, economical production and ecological sustainability. Syracuse University's Radhakrishna Sureshkumar, professor and chair of biomedical and chemical engineering in the L.C. Smith College of Engineering and Computer Science, and SU chemical engineering Ph.D. student Satvik Wani have uncovered a process that is a promising step toward accomplishing these three goals.

SU research team uses nanobiotechnology-manipulated light particles to accelerate algae growth

Syracuse, NY | Posted on August 25th, 2010

Sureshkumar and Wani have discovered a method to make algae, which can be used in the production of biofuels, grow faster by manipulating light particles through the use of nanobiotechnology. By creating accelerated photosynthesis, algae will grow faster with minimal change in the ecological resources required. This method is highlighted in the August 2010 issue of Nature Magazine.

The SU team has developed a new bioreactor that can enhance algae growth. They accomplished this by utilizing nanoparticles that selectively scatter blue light, promoting algae metabolism. When the optimal combination of light and confined nanoparticle suspension configuration was used, the team was able to achieve growth enhancement of an algae sample of greater than 30 percent as compared to a control.

"Algae produce triglycerides, which consist of fatty acids and glycerin. The fatty acids can be turned into biodiesel while the glycerin is a valuable byproduct," says Sureshkumar. "Molecular biologists are actively seeking ways to engineer optimal algae strains for biofuel production. Enhancing the phototropic growth rate of such optimal organisms translates to increased productivity in harvesting the feedstock."

The process involved the creation of a miniature bioreactor that consisted of a petri dish of a strain of green algae (Chlamydomonas reinhardtii) on top of another dish containing a suspension of silver nanoparticles that served to backscatter blue light into the algae culture. Through model-guided experimentation, the team discovered that by varying the concentration and size of the nanoparticle solution they could manipulate the intensity and frequency of the light source, thereby achieving an optimal wavelength for algal growth.

"Implementation of easily tunable wavelength specific backscattering on larger scales still remains a challenge, but its realization will have a substantial impact on the efficient harvesting of phototrophic microorganisms and reducing parasitic growth," says Sureshkumar. "Devices that can convert light not utilized by the algae into the useful blue spectral regime can also be envisioned."

To date, this is one of the first explorations into utilizing nanobiotechnology to promote microalgal growth. The acceleration in the growth rate of algae also had numerous benefits outside the area of biofuel production. Sureshkumar and Wani will be looking to employ this discovery to further their research in creating environmental sensors for ecological warning systems.

####

For more information, please click here

Contacts:
Ariel DuChene
(315) 443-2546

Copyright © Syracuse University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Sensors

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

LamdaGen Corporation Launches Taiwan Diagnostic Subsidiary March 19th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Environment

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

Energy

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE