Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Microneedle, Quantum Dot Study Opens Door To New Clinical Cancer Tools

Hollow microneedles open the door to new techniques for diagnosing and treating a variety of medical conditions, including skin cancer. Image reproduced by permission of the Royal Society of Chemistry.
Hollow microneedles open the door to new techniques for diagnosing and treating a variety of medical conditions, including skin cancer. Image reproduced by permission of the Royal Society of Chemistry.

Abstract:
Researchers from North Carolina State University have developed extremely small microneedles that can be used to deliver medically-relevant nanoscale dyes called quantum dots into skin - an advance that opens the door to new techniques for diagnosing and treating a variety of medical conditions, including skin cancer.

Microneedle, Quantum Dot Study Opens Door To New Clinical Cancer Tools

Raleigh, NC | Posted on August 25th, 2010

"We were able to fabricate hollow, plastic microneedles using a laser-based rapid-prototyping approach," says Dr. Roger Narayan, one of the lead researchers, "and found that we could deliver a solution containing quantum dots using these microneedles." Microneedles are very small needles in which at least one dimension - such as length - is less than one millimeter. Narayan is a professor in the joint biomedical engineering department of NC State's College of Engineering and the University of North Carolina at Chapel Hill.

"The motivation for the study was to see whether we could use microneedles to deliver quantum dots into the skin," Narayan says. "Our findings are significant, in part, because this technology will potentially enable researchers to deliver quantum dots, suspended in solution, to deeper layers of skin. That could be useful for the diagnosis and treatment of skin cancers, among other conditions." Quantum dots are nanoscale crystals with unique properties in terms of light emission. They hold promise as a tool in medical diagnosis.The researchers created the plastic microneedles and tested them using pig skin, which has characteristics closely resembling human skin. Using a water-based solution containing quantum dots, the researchers were able to capture images of the quantum dots entering the skin using multiphoton microscopy. These images show the mechanism by which the quantum dots enter the layers of skin, allowing the researchers to verify the effectiveness of the microneedles as a delivery mechanism for quantum dots.

The imaging method used in this study, multiphoton microscopy, may have clinical applications for real-time imaging of dyes - such as quantum dots - in the skin. This could contribute to more rapid diagnosis of cancers or other medical problems.

The study is also significant because it shows that a laser-based rapid prototyping approach allows for the creation of microneedles of varying lengths and shapes. This will allow physicians to create microneedles that are customized for treatment of a specific condition.

Specifically, the microneedles were created using two-photon polymerization, an approach pioneered by NC State and Laser Zentrum Hannover for use in medical device applications. Two-photon polymerization allowed the researchers to create hollow, plastic microneedles with specific design characteristics. "Our use of this fabrication technology highlights its potential for other small-scale medical device applications," Narayan says.

A paper describing the study, "Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles," will be published in the September issue of Faraday Discussions. The work was funded by the National Science Foundation and the National Institutes of Health.

The research was co-authored by Dr. Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State's Center for Chemical Toxicology Research and Pharmacokinetics; NC State Ph.D. students Shaun Gittard, Philip Miller and Ryan Boehm; Drs. Aleksandr Ovsianikov and Boris Chichkov of Laser Zentrum Hannover; and researchers from Ceramatec Inc. and MicroLin LLC & Technology Holding LLC.

Abstract

"Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles"

Authors: Shaun D. Gittard, Philip R. Miller, Ryan D. Boehm, Nancy A. Monteiro-Riviere, Roger J. Narayan, North Carolina State University; Boris Chichkov, Aleksandr Ovsianikov, Laser Zentrum Hannover; Jeremy Heiser, John Gordon, Ceramatec Inc. and MicroLin LLC & Technology Holding LLC

Published: September 2010, Faraday Discussions

Abstract: Due to their ability to serve as fluorophores and drug delivery vehicles, quantum dots are a powerful tool for theranostics-based clinical applications. In this study, microneedle devices for transdermal drug delivery were fabricated by means of two-photon polymerization of an acrylate-based polymer. We examined proliferation of cells on this polymer using neonatal human epidermal keratinocytes and human dermal fibroblasts. The microneedle device was used to inject quantum dots into porcine skin; imaging of the quantum dots was performed using multiphoton microscopy.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Roger Narayan
919.696.8488

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Possible Futures

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Quantum Dots/Rods

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Nanobiotechnology

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project