Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Microneedle, Quantum Dot Study Opens Door To New Clinical Cancer Tools

Hollow microneedles open the door to new techniques for diagnosing and treating a variety of medical conditions, including skin cancer. Image reproduced by permission of the Royal Society of Chemistry.
Hollow microneedles open the door to new techniques for diagnosing and treating a variety of medical conditions, including skin cancer. Image reproduced by permission of the Royal Society of Chemistry.

Abstract:
Researchers from North Carolina State University have developed extremely small microneedles that can be used to deliver medically-relevant nanoscale dyes called quantum dots into skin - an advance that opens the door to new techniques for diagnosing and treating a variety of medical conditions, including skin cancer.

Microneedle, Quantum Dot Study Opens Door To New Clinical Cancer Tools

Raleigh, NC | Posted on August 25th, 2010

"We were able to fabricate hollow, plastic microneedles using a laser-based rapid-prototyping approach," says Dr. Roger Narayan, one of the lead researchers, "and found that we could deliver a solution containing quantum dots using these microneedles." Microneedles are very small needles in which at least one dimension - such as length - is less than one millimeter. Narayan is a professor in the joint biomedical engineering department of NC State's College of Engineering and the University of North Carolina at Chapel Hill.

"The motivation for the study was to see whether we could use microneedles to deliver quantum dots into the skin," Narayan says. "Our findings are significant, in part, because this technology will potentially enable researchers to deliver quantum dots, suspended in solution, to deeper layers of skin. That could be useful for the diagnosis and treatment of skin cancers, among other conditions." Quantum dots are nanoscale crystals with unique properties in terms of light emission. They hold promise as a tool in medical diagnosis.The researchers created the plastic microneedles and tested them using pig skin, which has characteristics closely resembling human skin. Using a water-based solution containing quantum dots, the researchers were able to capture images of the quantum dots entering the skin using multiphoton microscopy. These images show the mechanism by which the quantum dots enter the layers of skin, allowing the researchers to verify the effectiveness of the microneedles as a delivery mechanism for quantum dots.

The imaging method used in this study, multiphoton microscopy, may have clinical applications for real-time imaging of dyes - such as quantum dots - in the skin. This could contribute to more rapid diagnosis of cancers or other medical problems.

The study is also significant because it shows that a laser-based rapid prototyping approach allows for the creation of microneedles of varying lengths and shapes. This will allow physicians to create microneedles that are customized for treatment of a specific condition.

Specifically, the microneedles were created using two-photon polymerization, an approach pioneered by NC State and Laser Zentrum Hannover for use in medical device applications. Two-photon polymerization allowed the researchers to create hollow, plastic microneedles with specific design characteristics. "Our use of this fabrication technology highlights its potential for other small-scale medical device applications," Narayan says.

A paper describing the study, "Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles," will be published in the September issue of Faraday Discussions. The work was funded by the National Science Foundation and the National Institutes of Health.

The research was co-authored by Dr. Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State's Center for Chemical Toxicology Research and Pharmacokinetics; NC State Ph.D. students Shaun Gittard, Philip Miller and Ryan Boehm; Drs. Aleksandr Ovsianikov and Boris Chichkov of Laser Zentrum Hannover; and researchers from Ceramatec Inc. and MicroLin LLC & Technology Holding LLC.

Abstract

"Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles"

Authors: Shaun D. Gittard, Philip R. Miller, Ryan D. Boehm, Nancy A. Monteiro-Riviere, Roger J. Narayan, North Carolina State University; Boris Chichkov, Aleksandr Ovsianikov, Laser Zentrum Hannover; Jeremy Heiser, John Gordon, Ceramatec Inc. and MicroLin LLC & Technology Holding LLC

Published: September 2010, Faraday Discussions

Abstract: Due to their ability to serve as fluorophores and drug delivery vehicles, quantum dots are a powerful tool for theranostics-based clinical applications. In this study, microneedle devices for transdermal drug delivery were fabricated by means of two-photon polymerization of an acrylate-based polymer. We examined proliferation of cells on this polymer using neonatal human epidermal keratinocytes and human dermal fibroblasts. The microneedle device was used to inject quantum dots into porcine skin; imaging of the quantum dots was performed using multiphoton microscopy.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Roger Narayan
919.696.8488

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Possible Futures

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Quantum Dots/Rods

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Nanobiotechnology

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project