Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bioengineering design makes health diagnosis simpler, quicker

Pictured is a drop of blood on a prototype of a diagnostic device developed by ASU researchers. It works by shining a near-infrared light-emitting diode (LED) on a drop of whole blood sitting on a water-repellent surface. The shape of the drop focuses the light into an intense beam measured by a second LED. Nanoparticles or microparticles in the drop begin to stick together when the fluid sample from a patient contains an infectious agent or a protein. This leads to the self-mixing action that enables detection of indications of infectious diseases and unhealthy protein levels.
Pictured is a drop of blood on a prototype of a diagnostic device developed by ASU researchers. It works by shining a near-infrared light-emitting diode (LED) on a drop of whole blood sitting on a water-repellent surface. The shape of the drop focuses the light into an intense beam measured by a second LED. Nanoparticles or microparticles in the drop begin to stick together when the fluid sample from a patient contains an infectious agent or a protein. This leads to the self-mixing action that enables detection of indications of infectious diseases and unhealthy protein levels.

Abstract:
ASU bioengineering research produces design for new device to help detect diseases quickly and at lower costs

Bioengineering design makes health diagnosis simpler, quicker

Phoenix, AZ | Posted on August 24th, 2010

Arizona State University researchers have demonstrated a way to dramatically simplify testing patients for infectious diseases and unhealthy protein levels.

New testing instrumentation developed by Antonia Garcia and John Schneider promises to make the procedure less costly and produce results in less time.

Current testing is slow and expensive because of the complications of working with blood, saliva, urine and other biological fluids, said Garcia, a professor in the School of Biological and Health Systems Engineering, one of ASU's Ira A. Fulton Schools of Engineering.

Such samples "are complex mixtures that require sophisticated instruments capable of mixing a sample with antibodies or other biological reactants to produce an accurate positive or negative reaction," Garcia said.

He and Schneider, a bioengineering graduate student researcher, have come up with a testing method that enables the patient sample itself to act in concert with a rudimentary, low-cost testing device.

The method uses common light-emitting diodes (LEDs) and simple microeletronic amplifiers rather than more technologically intensive and costly lasers and robotics.

Fluids and light working together

Garcia and Schneider have demonstrated that superhydrophobic surfaces can shape blood, saliva, urine and other fluids into round drops. The drops can focus light and quickly mix and move microparticles and nanopartices that can be examined to reveal a specific infectious agent or protein.

Superhydrophobicity is a property of materials that repel water, such as ducks' feather or leaves of the lotus plant. Such materials are used commercially in textiles, building materials and surface coatings.

The new device operates by placing a drop of nanoparticles or microparticles on top of a drop of a patient fluid sample on a superhydrophobic surface. The surface has a small depression that holds the liquid sample in place so that it forms a spherical drop.

The drop acts as a lens due to surface tension. An LED is shined on the drop and the drop shape focuses the light into an intense beam measured by a second LED.

Because the drop is slowly evaporating, Garcia explains, nanoparticles or microparticles quickly begin to stick together when the patient fluid sample contains the infectious agent or protein being targeted. The infectious agent or protein migrates to the center of the drop, leaving the particles that have not yet stuck together to move to the surface.

This leads to the self-mixing action that speeds up the diagnostic process so that detection can occur in less than two minutes, he said.

Measuring overall health

Because the fluid sample becomes integrated with the simple LEDs and microelectronics, the researchers call the new device design the Integrascope.

Garcia and Schneider have built several laboratory prototype devices based on the design and have demonstrated how the device can be used to measure C Reactive Protein in human serum, which is an indicator of a variety of inflammatory conditions when the protein is present at high levels.

High levels of protein can indicate cell and tissue damage, inflammation, disruption in kidney function, or an immune system that is pumping out antibodies due to an infection or autoimmune disease. Low protein levels can indicate malnutrition or the presence of diseases that prevent the body from producing sufficient blood protein.

The device also can be used to provide an indication of overall health by measuring total protein in human serum, saliva and urine.

Potential global impact

Development of the device was sparked during Schneider's studies for his doctoral degree, as he experimented with shining an LED on a drop of liquid resting on a superhydrophobic surface. He was trying to see if he could detect changes in light transmission that would tell whether a protein was present in the liquid.

"To our surprise," Garcia said, "we quickly realized that his laboratory set-up generated a very strong beam of light that could be easily measured using a fiber-optic light detector we had in the lab."

The research results have been posted on the web site Nature Precedings. The report describes how the new device works and gives details of the information the diagnostic test provides within the first few minutes of its use.

Low-cost solutions

The most common low-cost devices on the market now are lateral-flow immunoassays similar in look and function to the early pregnancy test.

The biggest stumbling block in making low-cost diagnostic devices for many conditions and diseases is that sensitivity is compromised for specificity in these lateral-flow immunoassays.

A different strategy to miniaturize complex instruments suffers from the difficulty in reducing the cost to what most people would be able to afford - about $1 to $2 dollars per test - as well as the need for spare parts and special handling.

"To have a global impact, we need to have accurate and sensitive tools that can help health care providers treat patients at a low cost during their first visit", Schneider said.

"Our goal is to translate this technology and design into a rugged and easy-to-use device that we would give away for free to clinics. The only costs involved with using the Integrascope would be in the drop of particles and a small piece of a superhydrophobic surface - about $1 to $2 dollars," Garcia said.

International collaboration

With the repeated and more frequent spread of infectious diseases around the globe, it's becoming more critical to have good diagnostic systems in poor countries so proper treatment can be provided rapidly - and so that there is a global early-warning system to alert the public if new and significant outbreaks of disease emerge, Garcia said.

To help accomplish that, Garcia and Schneider are teaming with nanotechnology experts Vladimiro Mujica and Manuel Marquez.

They hope to establish collaborations with Latin American universities, government leaders and entrepreneurs to develop the new diagnostic device.

"We believe a joint U.S.-Latin America technology development effort will spark economic activity that will benefit both regions and prevent disease outbreaks and social unrest in our part of the world", said Mujica, a professor in the Department of Chemistry and Biochemistry in ASU's College of Liberal Arts & Sciences.

Marquez, an entrepreneur and adjunct faculty member in the School of Biological and Health Systems Engineering, is president and research leader of the company YNANO. The company specializes in droplet-nanoengineering for biomedical applications, including Integrascope for disease diagnosis.

"I'm excited about the potential for this device, and that students can be directly engaged in the research and development process," Marquez said. "I've devoted more than a decade of my career to enabling engineers and scientists to rapidly apply their basic discoveries to solving real-life problems."

For more information, read the article "Rapid antigen detection using the liquid sample as a lens and self-mixer for light scattering detection," by Garcia and Schneider posted on the web site Nature Precedings.

####

For more information, please click here

Contacts:
Joe Kullman

(480) 965-8122
Ira A. Fulton Schools of Engineering

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Nanomedicine

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE