Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Good Vibrations: new atom-scale products on horizon

Abstract:
Breakthrough discovery enables nanoscale manipulation of the piezoelectric effect

Good Vibrations: new atom-scale products on horizon

Quebec, Canada | Posted on August 24th, 2010

The generation of an electric field by the compression and expansion of solid materials is known as the piezoelectric effect, and it has a wide range of applications ranging from everyday items such as watches, motion sensors and precise positioning systems. Researchers at McGill University's Department of Chemistry have now discovered how to control this effect in nanoscale semiconductors called "quantum dots," enabling the development of incredibly tiny new products.

Although the word "quantum" is used in everyday language to connote something very large, it actually means the smallest amount by which certain physical quantities can change. A quantum dot has a diameter of only 10 to 50 atoms, or less than 10 nanometres. By comparison, the diameter of the DNA double-helix is 2 nanometres. The McGill researchers have discovered a way to make individual charges reside on the surface of the dot, which produces a large electric field within the dot. This electric field produces enormous piezoelectric forces causing large and rapid expansion and contraction of the dots within a trillionth of a second. Most importantly, the team is able to control the size of this vibration.

Cadmium Selenide quantum dots can be used in a wide range of technological applications. Solar power is one area that has been explored, but this new discovery has paved way for other nanoscale device applications for these dots. This discovery offers a way of controlling the speed and switching time of nanoelectronic devices, and possibly even developing nanoscale power supplies, whereby a small compression would produce a large voltage.

"The piezoelectric effect has never been manipulated at this scale before, so the range of possible applications is very exciting," explained Pooja Tyagi, a PhD researcher in Professor Patanjali Kambhampati's laboratory. "For example, the vibrations of a material can be analyzed to calculate the pressure of the solvent they are in. With further development and research, maybe we could measure blood pressure non-invasively by injecting the dots, shining a laser on them, and analyzing their vibration to determine the pressure." Tyagi notes that Cadium Selenide is a toxic metal, and so one of the hurdles to overcome with regard to this particular example would be finding a replacement material.

The research was published in Nano Letters and received funding from the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, and the Fonds Québécois de la Recherche sur la Nature et les Technologies.

For more information: kambhampati-group.mcgill.com

####

Contacts:
William Raillant-Clark,
Media Relations Office
Tel.: 514-398-2189

Copyright © McGill University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

New electron microscope method detects atomic-scale magnetism June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Possible Futures

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Discoveries

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Quantum Dots/Rods

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic