Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Two Caltech Scientists Receive 2010 NIH Director's Pioneer Awards

Michael Roukes, left; Pamela Bjorkman, right
Michael Roukes, left; Pamela Bjorkman, right

Abstract:
Two scientists from the California Institute of Technology (Caltech) have been recognized by the National Institutes of Health (NIH) for their innovative and high-impact biomedical research programs.

Two Caltech Scientists Receive 2010 NIH Director's Pioneer Awards

Pasadena, CA | Posted on August 23rd, 2010

Michael Roukes, professor of physics, applied physics, and bioengineering, and co-director of the Kavli Nanoscience Institute, and Pamela Bjorkman, Caltech's Max Delbrück Professor of Biology and a Howard Hughes Medical Institute investigator, now join the 81 Pioneers—including Caltech researchers Rob Phillips and Bruce Hay—who have been selected since the program's inception in 2004.

"NIH is pleased to be supporting scientists from across the country who are taking considered risks in a wide range of areas in order to accelerate research," said NIH Director Francis S. Collins in announcing the awards. "We look forward to the result of their work."

According to its website, the program provides each investigator chosen with up to $500,000 in direct costs each year for five years to pursue what the NIH refers to as "high-risk research," and was created to "support individual scientists of exceptional creativity who propose pioneering—and possibly transforming—approaches to major challenges in biomedical and behavioral research."

For Roukes, that means using "nanoscale tools to push biomedical frontiers." Specifically, he plans to leverage advances in nanosystems technology, "an approach that coordinates vast numbers of individual nanodevices into a coherent whole," he explains.

The goal? To create tiny "chips" that can be used to rapidly identify which specific bacteria are plaguing an individual patient—quickly, at the patient's bedside, and without the need for culturing. Similar chips, he says, will be capable of "obtaining physiological 'fingerprints' from exhaled breath" for use in disease diagnostics.

Roukes says the chips will also provide new approaches to cancer research through the analysis of cell mechanics and motility, and will provide less-costly ways to screen libraries of therapeutic drug candidates. Roukes's highly collaborative efforts are aimed at jump-starting what he calls a "nanobiotech incubator" at Caltech.

Roukes received his PhD in physics in 1985 from Cornell University. He has been at Caltech since 1992, and was named founding director of the Kavli Nanoscience Institute in 2004.

Bjorkman's Pioneer project will focus on ways to improve the human immune response to HIV. "HIV/AIDS remains one of the most important current threats to global public health," she says. "Although humans can mount effective immune responses using antibodies against many other viruses, the antibody response to HIV in infected individuals is generally ineffective."

This, she believes, is the result of the "unusually low number and low density of spikes" on the surface membrane of the virus. Antibodies have two identical "arms" with which to attach to a virus or bacterium. In most cases, the density of spikes on a pathogen's surface is high enough that these arms can simultaneously attach to neighboring spikes. Not so with HIV; because its spikes are so few and far between, antibodies tend to bind with only one arm attaching to a single spike. Such binding is weak, says Bjorkman, "much like if you were hanging from a bar with only one arm," and is easily eliminated by viral mutations.

That is why Bjorkman is proposing "a new methodology, designed to screen for and produce novel anti-HIV binding proteins that can bind simultaneously to all three monomers in an HIV spike trimer." A trimer is a protein made of three identical macromolecules; if an antibody can bind to all three proteins at one time, it will "interact very tightly and render the low spike density of HIV and its high mutation rate irrelevant to effective neutralization," Bjorkman explains.

Bjorkman received her PhD in biochemistry and molecular biology in 1984 from Harvard University. She has been at Caltech since 1989, and was named the Delbrück Professor in 2004.

####

For more information, please click here

Contacts:
Lori Oliwenstein
(626) 395-3631

Copyright © Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanomedicine

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Announcements

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Nanobiotechnology

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project