Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Two Caltech Scientists Receive 2010 NIH Director's Pioneer Awards

Michael Roukes, left; Pamela Bjorkman, right
Michael Roukes, left; Pamela Bjorkman, right

Abstract:
Two scientists from the California Institute of Technology (Caltech) have been recognized by the National Institutes of Health (NIH) for their innovative and high-impact biomedical research programs.

Two Caltech Scientists Receive 2010 NIH Director's Pioneer Awards

Pasadena, CA | Posted on August 23rd, 2010

Michael Roukes, professor of physics, applied physics, and bioengineering, and co-director of the Kavli Nanoscience Institute, and Pamela Bjorkman, Caltech's Max Delbrück Professor of Biology and a Howard Hughes Medical Institute investigator, now join the 81 Pioneers—including Caltech researchers Rob Phillips and Bruce Hay—who have been selected since the program's inception in 2004.

"NIH is pleased to be supporting scientists from across the country who are taking considered risks in a wide range of areas in order to accelerate research," said NIH Director Francis S. Collins in announcing the awards. "We look forward to the result of their work."

According to its website, the program provides each investigator chosen with up to $500,000 in direct costs each year for five years to pursue what the NIH refers to as "high-risk research," and was created to "support individual scientists of exceptional creativity who propose pioneering—and possibly transforming—approaches to major challenges in biomedical and behavioral research."

For Roukes, that means using "nanoscale tools to push biomedical frontiers." Specifically, he plans to leverage advances in nanosystems technology, "an approach that coordinates vast numbers of individual nanodevices into a coherent whole," he explains.

The goal? To create tiny "chips" that can be used to rapidly identify which specific bacteria are plaguing an individual patient—quickly, at the patient's bedside, and without the need for culturing. Similar chips, he says, will be capable of "obtaining physiological 'fingerprints' from exhaled breath" for use in disease diagnostics.

Roukes says the chips will also provide new approaches to cancer research through the analysis of cell mechanics and motility, and will provide less-costly ways to screen libraries of therapeutic drug candidates. Roukes's highly collaborative efforts are aimed at jump-starting what he calls a "nanobiotech incubator" at Caltech.

Roukes received his PhD in physics in 1985 from Cornell University. He has been at Caltech since 1992, and was named founding director of the Kavli Nanoscience Institute in 2004.

Bjorkman's Pioneer project will focus on ways to improve the human immune response to HIV. "HIV/AIDS remains one of the most important current threats to global public health," she says. "Although humans can mount effective immune responses using antibodies against many other viruses, the antibody response to HIV in infected individuals is generally ineffective."

This, she believes, is the result of the "unusually low number and low density of spikes" on the surface membrane of the virus. Antibodies have two identical "arms" with which to attach to a virus or bacterium. In most cases, the density of spikes on a pathogen's surface is high enough that these arms can simultaneously attach to neighboring spikes. Not so with HIV; because its spikes are so few and far between, antibodies tend to bind with only one arm attaching to a single spike. Such binding is weak, says Bjorkman, "much like if you were hanging from a bar with only one arm," and is easily eliminated by viral mutations.

That is why Bjorkman is proposing "a new methodology, designed to screen for and produce novel anti-HIV binding proteins that can bind simultaneously to all three monomers in an HIV spike trimer." A trimer is a protein made of three identical macromolecules; if an antibody can bind to all three proteins at one time, it will "interact very tightly and render the low spike density of HIV and its high mutation rate irrelevant to effective neutralization," Bjorkman explains.

Bjorkman received her PhD in biochemistry and molecular biology in 1984 from Harvard University. She has been at Caltech since 1989, and was named the Delbrück Professor in 2004.

####

For more information, please click here

Contacts:
Lori Oliwenstein
(626) 395-3631

Copyright © Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Nanobiotechnology

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project