Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Extreme Darkness: Carbon Nanotube Forest Covers NIST’s Ultra-dark Detector

Colorized micrograph of the world's darkest material—a sparse "forest" of fine carbon nanotubes — coating a NIST laser power detector. Image shows a region approximately 25 micrometers across.

Credit: Aric Sanders/NIST
Colorized micrograph of the world's darkest material—a sparse "forest" of fine carbon nanotubes — coating a NIST laser power detector. Image shows a region approximately 25 micrometers across.

Credit: Aric Sanders/NIST

Abstract:
Harnessing darkness for practical use, researchers at the National Institute of Standards and Technology (NIST) have developed a laser power detector coated with the world's darkest material—a forest of carbon nanotubes that reflects almost no light across the visible and part of the infrared spectrum.

Extreme Darkness: Carbon Nanotube Forest Covers NIST’s Ultra-dark Detector

Gaithersburg, MD | Posted on August 20th, 2010

NIST will use the new ultra-dark detector, described in a new paper in Nano Letters,* to make precision laser power measurements for advanced technologies such as optical communications, laser-based manufacturing, solar energy conversion, and industrial and satellite-borne sensors.

Inspired by a 2008 paper by Rensselaer Polytechnic Institute (RPI) on "the darkest man-made material ever,"** the NIST team used a sparse array of fine nanotubes as a coating for a thermal detector, a device used to measure laser power. A co-author at Stony Brook University in New York grew the nanotube coating. The coating absorbs laser light and converts it to heat, which is registered in pyroelectric material (lithium tantalate in this case). The rise in temperature generates a current, which is measured to determine the power of the laser. The blacker the coating, the more efficiently it absorbs light instead of reflecting it, and the more accurate the measurements.

The new NIST detector uniformly reflects less than 0.1 percent of light at wavelengths from deep violet at 400 nanometers (nm) to near infrared at 4 micrometers (μm) and less than 1 percent of light in the infrared spectrum from 4 to 14 μm. The results are similar to those reported for the RPI material and in a 2009 paper by a Japanese group. The NIST work is unique in that the nanotubes were grown on pyroelectric material, whereas the other groups grew them on silicon. NIST researchers plan to extend the calibrated operating range of their device to 50 or even 100 micrometer wavelengths, to perhaps provide a standard for terahertz radiation power.

NIST previously made detector coatings from a variety of materials, including flat nanotube mats. The new coating is a vertical forest of multiwalled nanotubes, each less than 10 nanometers in diameter and about 160 micrometers long. The deep hollows may help trap light, and the random pattern diffuses any reflected light in various directions. Measuring how much light was reflected across a broad spectrum was technically demanding; the NIST team spent hundreds of hours using five different methods to measure the vanishingly low reflectance with adequate precision. Three of the five methods involved comparisons of the nanotube-coated detector to a calibrated standard.

Carbon nanotubes offer ideal properties for thermal detector coatings, in part because they are efficient heat conductors. Nickel phosphorous, for example, reflects less light at some wavelengths, but does not conduct heat as well. The new carbon nanotube materials also are darker than NIST's various Standard Reference Materials for black color developed years ago to calibrate instruments.

* J. Lehman, A. Sanders, L. Hanssen, B. Wilthan and J. Zeng. 2010. A Very Black Infrared Detector from Vertically Aligned Carbon Nanotubes and Electric-field Poling of Lithium Tantalate. Nano Letters. Posted online Aug. 3, 2010.

** Z.P. Yang, L. Ci, J.A. Bur, S.Y. Lin and P.M. Ajayan. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Letters. Vol. 8, No. 2, 446-451.

####

About NIST
NIST, an agency of the U.S. Department of Commerce, was founded in 1901 as the nation's first federal physical science research laboratory. Over the years, the scientists and technical staff at NIST have made solid contributions to image processing, DNA diagnostic "chips," smoke detectors, and automated error-correcting software for machine tools. Just a few of the other areas in which NIST has had major impact include atomic clocks, X-ray standards for mammography, scanning tunneling microscopy, pollution-control technology, and high-speed dental drills.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

Laboratories

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

Los Alamos Offers New Insights Into Radiation Damage Evolution: TUnderstanding defects in materials aids in performance predictions March 18th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Nanotubes/Buckyballs

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Effect of Carbon Nanotubes on Properties of Cement Composites Studied in Iran March 23rd, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Discoveries

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Tools

LAMDAMAP 2015 hosted by the University March 26th, 2015

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

Aerospace/Space

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Engineers create chameleon-like artificial 'skin' that shifts color on demand March 12th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Launch of the Alliance for Space Development March 1st, 2015

Industrial

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

Industrial Production of Nano-Based PVC Products in Iran March 20th, 2015

Photonics/Optics/Lasers

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Chemists make new silicon-based nanomaterials March 27th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Solar/Photovoltaic

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE