Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Hollow Fibers: ARPA-E Funding Supports Development of Membranes and Sorbents for Carbon Dioxide Removal from Flue Gases

Georgia Tech researcher David Sholl is leading a project to develop hollow-fiber membranes that use metal-organic framework materials to remove carbon dioxide from flue gases. Credit: Georgia Research Alliance
Georgia Tech researcher David Sholl is leading a project to develop hollow-fiber membranes that use metal-organic framework materials to remove carbon dioxide from flue gases. Credit: Georgia Research Alliance

Abstract:
Researchers at the Georgia Institute of Technology are using funding from the Advanced Research Projects Agency - Energy - also known as ARPA-E - to pursue two different, but related, approaches for removing carbon dioxide from the flue gases of coal-burning power plants.

By John Toon

Hollow Fibers: ARPA-E Funding Supports Development of Membranes and Sorbents for Carbon Dioxide Removal from Flue Gases

Atlanta, GA | Posted on August 18th, 2010

Power plants produce approximately one-third of all carbon dioxide emitted in the United States each year. The researchers will attempt to use the unique high-density properties of hollow fibers to develop cost-effective techniques for removing large volumes of the greenhouse gas from the emissions.

In one project, awarded directly to Georgia Tech, researchers are developing hollow-fiber composite membranes that will use nanoporous metal-organic framework materials to separate carbon dioxide from the flue gases. In the other project, Georgia Tech researchers are assisting colleagues at Oak Ridge National Laboratory in developing hollow-fiber sorbents that will soak up carbon dioxide like a sponge - then release it when heated.

Both will take advantage of the very high surface-to-volume properties of hollow fibers spun from polymers. For the membrane project, researchers envision providing a million square meters of membrane area within a moderately-sized building using the compact footprint allowed by the fibers.

"The challenge with this is to have a technology that not only physically works, but that can be built on a large scale and operated inexpensively," said David Sholl, who leads the membrane project as a professor in the Georgia Tech School of Chemical and Biomolecular Engineering. "If we are successful, this technology could have a very significant impact on trying to reduce carbon emissions from the combustion of coal."

Capturing carbon dioxide emissions at power plants makes sense because the emissions are concentrated there, Sholl says. But current technology, which involves bubbling stack gases through an aqueous solution and then removing the carbon dioxide, would consume at least a third of the energy produced by each power plant.

Membranes could theoretically separate the carbon dioxide from other gases with less energy input. But no existing membrane materials can do the job while being robust enough to operate in the hostile flue-gas environment - and inexpensive enough for the large areas needed.

"The volume is truly incredible any way you look at it - how much coal is burned or how much gas is produced per second," said Sholl, who is a Georgia Research Alliance eminent scholar in energy sustainability. "With a really good membrane, we would need something like a million square meters of area per power plant. That amount sounds impossible, but it's something already being done in water desalination facilities."

Hollow fibers no thicker than a hair are the key to providing sufficient membrane surface area, said William Koros, who is working on both projects as a professor in the School of Chemical and Biomolecular Engineering.

"Depending on the details of the design, the contact area that can be packaged into a cubic meter of membrane or sorbent volume can be hundreds or thousands of times higher than could be achieved through competitive approaches," said Koros, who is a Georgia Research Alliance eminent scholar in membrane science and technology. "This would allow us to fit the new carbon capture materials into already-cramped power plants."

Sholl and his colleagues are using computational techniques to screen the nearly 5,000 compounds that could be used in the metal-organic framework materials, which are sub-micron-scale crystals that will be added to the fibers to separate the carbon dioxide from other gases. Using the computational techniques, they hope to cut the number of candidate materials to as few as 50 that would be synthesized and tested.

"We are trying to connect the computational screening and prediction to a material that can actually be used in a membrane," said Carson Meredith, also a professor in the School of Chemical and Biomolecular Engineering. "We will study these compounds in a rapid way, measuring just the key properties of interest."

Those properties include permeance - the ability to allow carbon dioxide through - and selectivity, which will allow it to exclude other gases. That screening should cut the number of candidates to a handful that would actually be used to make membranes for more detailed testing, Sholl said.

At the end of the two-year grant period, the researchers expect to have produced and tested hollow-fiber membranes at the laboratory scale. They would then partner with a manufacturer to produce bundles of the fibers for a pilot-scale test.

Power plant flue gases contain nitrogen oxide and sulfur oxides, as well as moisture, which can combine to cause corrosion. Moisture alone can also cause problems for some membranes. In addition, flue gases contain trace amounts of compounds such as chlorine and mercury that could also harm the membranes.

"We won't really know what the contaminants will do until we put the membrane into the flue-gas stream," Sholl said. "A key issue will be to show that these materials will work today and tomorrow, and for a long time afterward. The robustness of the materials in a real environment is something that we have to understand."

A carbon capture system based on the hollow-fiber membranes could potentially remove as much as 90 percent of the carbon dioxide from plant emissions. But that would come at a cost: even in the best-case calculations, removal would require at least 10 percent of the plant's energy.

"The reality is that all countries around the world are going to burn coal for the foreseeable future," Sholl added. "We really don't have a choice because we don't have other good sources of baseline load at the level we get from coal. Any technology to economically capture carbon from these facilities could have a big impact."

In addition to those already mentioned, the membrane project includes Krista Walton, Christopher Jones and Sankar Nair, all professors in the School of Chemical and Biomolecular Engineering. The projects are funded through the American Recovery and Reinvestment Act of 2009 (ARRA).

####

For more information, please click here

Contacts:
Media Relations Contacts:
John Toon
404-894-6986


Abby Vogel Robinson
404-385-3364


Technical Contact:
David Sholl

Copyright © Georgia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Collaboration could lead to biodegradable computer chips May 28th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Possible Futures

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GWs new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Announcements

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Environment

Collaboration could lead to biodegradable computer chips May 28th, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Directa Plus in Barcelona to present the innovative project GEnIuS for oil spills clean-up activities: The company has created a graphene-based product for the remediation of water contaminated by oil and hydrocarbons May 21st, 2015

Nano-policing pollution May 13th, 2015

Industrial

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

Research partnerships

Collaboration could lead to biodegradable computer chips May 28th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project