Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticle vaccine used to cure Type 1 diabetes in mice

Abstract:
Using a sophisticated nanotechnology-based "vaccine," researchers were able to successfully cure mice with type 1 diabetes and slow the onset of the disease in mice at risk for the disease. The study, conducted at the University of Calgary was published April 8 in the online edition of the scientific journal Immunity.

Nanoparticle vaccine used to cure Type 1 diabetes in mice

Calgary | Posted on August 17th, 2010

The study co-funded by the Juvenile Diabetes Research Foundation, provides new and important insights into understanding how to stop the immune attack that causes type 1 diabetes, and could even have implications for other autoimmune diseases.

The research was led by Dr. Pere Santamaria, Chair of the Julia McFarlane Diabetes ResearcherCentre in UCalgary's Faculty of Medicine. The researchers were looking to specifically stop the autoimmune response that causes type 1 diabetes without damaging the immune cells that provide protection against infections - what is called an "antigen-specific" immunotherapy. Type 1 diabetes is caused when certain white blood cells (called T cells) mistakenly attack and destroy the insulin-producing beta cells in the pancreas.

Antigen-specific immunotherapies, like Dr. Santamaria's work on nanovaccines, are a priority within JDRF's Immune Therapies program.

"Essentially there is an internal tug-of-war between aggressive T-cells that want to cause the disease and weaker T cells that want to stop it from occurring," says Dr. Santamaria, who is a JDRF Scholar, an award to academic scientists taking innovative and creative approaches to better treat and cure type 1 diabetes and its complications.

Study finds treatment does not compromise immune system

According to Teodora Staeva, Ph.D., JDRF Program Director of Immune Therapies, a key finding from the study is that the treatment did not compromise the rest of the immune system - a key consideration for the treatment to be safe and effective in an otherwise healthy person with type 1 diabetes.

"The potential that nanoparticle vaccine therapy holds in reversing the immune attack without generally suppressing the immune system is significant," said Dr. Staeva. "Dr. Santamaria's research has provided both insight into pathways for developing new immunotherapies and proof-of-concept of a specific therapy that exploits these pathways for preventing and reversing type 1 diabetes."

Dr. Santamaria noted that the study had implications for other autoimmune diseases beyond type 1 diabetes. "If the paradigm on which this nanovaccine is based holds true in other chronic autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and others, nanovaccines might find general applicability in autoimmunity," says Dr. Santamaria, a Professor in the Department of Microbiology and Infectious Diseases and a member of the Calvin, Phoebe and Joan Snyder Institute of Infection, Immunity and Inflammation

The nanoparticle vaccine technology developed by Dr. Santamaria used in the study is licensed by Parvus Therapeutics Inc., a biotechnology company focused on the development and commercialization of the nanotechnology-based therapeutic platform. Parvus Therapeutics Inc. was spun out from UTI Limited Partnership, the technology transfer and commercialization center for the University of Calgary.

This work was supported by the Canadian Institutes of Health Research, the Juvenile Diabetes Research Foundation (JDRF), the Natural Sciences and Engineering Research Council of Canada, and the Canadian Diabetes Association (CDA). Sue Tsai, Afshin Shameli and Pau Serra were supported by Alberta Innovates - Health Solutions, and Jinguo Wang by the CDA. Pere Santamaria is a Scientist of Alberta Innovates - Health Solutions and a JDRF Scholar. The JMDRC is supported by the Diabetes Association (Foothills)

####

For more information, please click here

Copyright © University of Calgary

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Possible Futures

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Nanobiotechnology

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project