Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rensselaer Polytechnic Institute Researchers Develop Coating That Safely Kills MRSA on Contact

Image credit: Rensselaer/Ravindra C.Pangule
Image credit: Rensselaer/Ravindra C.Pangule

Abstract:
Building on an enzyme found in nature, researchers at Rensselaer Polytechnic Institute have created a nanoscale coating for surgical equipment, hospital walls, and other surfaces which safely eradicates methicillin resistant Staphylococcus aureus (MRSA), the bacteria responsible for antibiotic resistant infections.

Rensselaer Polytechnic Institute Researchers Develop Coating That Safely Kills MRSA on Contact

Troy, NY | Posted on August 17th, 2010

"We're building on nature," said Jonathan S. Dordick, the Howard P. Isermann Professor of Chemical and Biological Engineering, and director of Rensselaer's Center for Biotechnology & Interdisciplinary Studies. "Here we have a system where the surface contains an enzyme that is safe to handle, doesn't appear to lead to resistance, doesn't leach into the environment, and doesn't clog up with cell debris. The MRSA bacteria come in contact with the surface, and they're killed."

In tests, 100 percent of MRSA in solution were killed within 20 minutes of contact with a surface painted with latex paint laced with the coating.

The new coating marries carbon nanotubes with lysostaphin, a naturally occurring enzyme used by non-pathogenic strains of Staph bacteria to defend against Staphylococcus aureus, including MRSA. The resulting nanotube-enzyme "conjugate" can be mixed with any number of surface finishes — in tests, it was mixed with ordinary latex house paint.

Unlike other antimicrobial coatings, it is toxic only to MRSA, does not rely on antibiotics, and does not leach chemicals into the environment or become clogged over time. It can be washed repeatedly without losing effectiveness and has a dry storage shelf life of up to six months.

The research, led by Dordick and Ravi Kane, a professor in the Department of Chemical and Biological Engineering at Rensselaer, along with collaboration from Dennis W. Metzger at Albany Medical College, and Ravi Pangule, a chemical engineering graduate student on the project, has been published in the July edition of the journal ACS Nano, published by the American Chemical Society.

Dordick said the nanotube-enzyme coating builds on several years of previous work embedding enzymes into polymers. In previous studies, Dordick and Kane discovered that enzymes attached to carbon nanotubes were more stable and more densely packed when embedded into polymers than enzymes alone.

"If we put an enzyme directly in a coating (such as paint) it will slowly pop out," Kane said. "We wanted to create a stabilizing environment, and the nanotubes allow us to do that."

Having established the basics of embedding enzymes into polymers, they turned their attention to practical applications.

"We asked ourselves — were there examples in nature where enzymes can be exploited that have activity against bacteria?" Dordick said. The answer was yes and the team quickly focused on lysostaphin, an enzyme secreted by non-pathogenic Staph strains, harmless to humans and other organisms, capable of killing Staphylococcus aureus, including MRSA, and commercially available.

"It's very effective. If you put a tiny amount of lysostaphin in a solution with Staphylococcus aureus, you'll see the bacteria die almost immediately," Kane said.

Lysostaphin works by first attaching itself to the bacterial cell wall and then slicing open the cell wall (the enzyme's name derives from the Greek "lysis" meaning "to loosen or release").

"Lysostaphin is exceptionally selective," Dordick said. "It doesn't work against other bacteria and it is not toxic to human cells."

The enzyme is attached to the carbon nanotube with a short flexible polymer link, which improves its ability to reach the MRSA bacteria, said Kane.

"The more the lysostaphin is able to move around, the more it is able to function." Dordick said.

They successfully tested the resulting nanotube-enzyme conjugate at Albany Medical College, where Metzger maintains strains of MRSA.

"At the end of the day we have a very selective agent that can be used in a wide range of environments — paints, coating, medical instruments, door knobs, surgical masks — and it's active and it's stable," Kane said. "It's ready to use when you're ready to use it."

The nanotube-enzyme approach is likely to prove superior to previous attempts at antimicrobial agents, which fall into two categories: coatings that release biocides, or coatings that "spear" bacteria.

Coatings that release biocides — which work in a manner similar to marine anti-fouling paint — pose harmful side-effects and lose effectiveness over time as their active ingredient leaches into the environment.

Coatings that spear bacteria — using amphipatic polycations and antimicrobial peptides — tend to clog, also losing effectiveness.

The nanotube-lysostaphin coating does neither, said Dordick.

"We spent quite a bit of time demonstrating that the enzyme did not come out of the paint during the antibacterial experiments. Indeed, it was surprising that the enzyme worked as well as it did while remaining embedded near the surface of the paint," Dordick said.

The enzyme's slicing or "lytic" action also means that bacterial cell contents disperse, or can be removed by rinsing or washing the surface.

Kane also said MRSA are unlikely to develop resistance to a naturally occurring enzyme.

"Lysostaphin has evolved over hundreds of millions of years to be very difficult for Staphylococcus aureus to resist," Kane said. "It's an interesting mechanism that these enzymes use that we take advantage of."

####

For more information, please click here

Contacts:
Mary L. Martialay
Phone: (518) 276-2146

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Academic/Education

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

Nanotubes/Buckyballs

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

Elsevier Publishes New Content on Graphene and Materials Science: Books Discuss Properties and Emerging Applications of Carbon Nanotubes, Graphene and Nanomaterials September 25th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

Nanomedicine

Arrowhead Expands Management Team with Appointment of Susan Boynton as Vice President Global Regulatory Affairs October 1st, 2014

Nanobotmodels present metastasis and angiogenesis medical animation October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Nanobiotechnology

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

New NIH/DOE Grant for Life Science Studies at NSLS-II: Funding will support operation of three powerful experimental stations designed to reveal detailed structures of proteins, viruses, and more September 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE