Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Dancing in the dark: how proteins and salts interact

Simulation of the interaction between triglycine and dissolved sodium sulfite in water shows the long chain-like triglycine molecule (center) interacting directly with sulfite anions (tripods of yellow and red atoms) while also interacting via multiple hydrogen bonds (thin red or blue lines) with the surrounding water molecules (red and white sticks). Courtesy Berkeley Lab
Simulation of the interaction between triglycine and dissolved sodium sulfite in water shows the long chain-like triglycine molecule (center) interacting directly with sulfite anions (tripods of yellow and red atoms) while also interacting via multiple hydrogen bonds (thin red or blue lines) with the surrounding water molecules (red and white sticks). Courtesy Berkeley Lab

Abstract:
Scientists are getting a new look at how proteins interact with simple salts in water, and what impacts these interactions may have on protein structures at the atomic level.

Dancing in the dark: how proteins and salts interact

Berkeley, CA | Posted on August 13th, 2010

To study nanostructures in real environments, Berkeley Lab scientists have combined theoretical and experimental approaches to glimpse into a protein's interaction with simple salts in water. Enabled by x-ray absorption simulation software developed at Berkeley Lab's Molecular Foundry, these findings shed new light on how salts impact protein structure at the atomic level.

Traditional crystallographic techniques, such as x-ray diffraction, provide a profile of ordered materials with static structures. However, for dynamic or complex systems in which the atomic structure is rapidly changing, more sophisticated methods are needed. Now, Berkeley Lab scientists have applied x-ray absorption spectroscopy to study a model protein, triglycine—a short chain of three molecules of the simplest amino acid, glycine. By simulating this molecule's x-ray absorption spectrum the team has show how its chain kinks and straightens in response to ions in solution.

"Watching a molecule in solution is like watching a marionette—you can see it bending in response to making and breaking of hydrogen bonds," said David Prendergast, a staff scientist in the Theory of Nanostructures Facility at the Molecular Foundry. "A concrete knowledge of how ions influence this behavior comes from using molecular dynamics simulations, which show persistent differences in structure on nanosecond timescales. From this data we can generate x-ray absorption spectra which can then be compared with experimental results."

In a specialized x-ray absorption experiment called near edge x-ray absorption fine structure (NEXAFS), x-rays are used to probe the chemical bonding and environment of specific elements in a molecule or nanostructure, such as the nitrogen atoms in a triglycine molecule. Coupled with a liquid microjet technology developed at Berkeley Labs, NEXAFS has been previously used to examine how proteins dissolve and crystallize in the presence of various ions .

Prendergast's software can now simulate NEXAFS data by averaging a series of snapshots taken from a molecular dynamics simulation of a given molecule. This software is a critical tool for interpreting NEXAFS data from complex, dynamic systems, as the probe times in these measurements are too slow—seconds rather than nanoseconds—to reveal structural differences at the nanoscale.

"Previous studies from our group have shown the development of x-ray absorption spectroscopy of liquid microjets provides a new atom-sensitive probe of the interactions between aqueous ions, but it is the advent of this new theory that provides the first reliable molecular-level interpretation of these data," said Richard Saykally, a Berkeley Lab chemist and professor of chemistry at the University of California at Berkeley. "Here we see this new combination of theory and experiment applied to one of the most important problems in biophysical chemistry."

Prendergast says his molecular dynamics technique can be used to model x-ray spectra of a biological system with known structure to determine its local interactions, what causes it to form a particular structure, and why it takes on a particular conformation—all by simulating the spectra of a series of individual snapshots and comparing with experimental results. These simulations are computationally intensive and rely heavily on the large-scale supercomputing infrastructure provided by Berkeley Lab's National Energy Research Scientific Computing Center (NERSC).

"Although these effects are a fundamental part of nature, they are still poorly understood," said Craig Schwartz, a researcher working with Prendergast and Saykally, whose graduate work led to this publication. "The experimental sensitivity of NEXAFS, coupled with a breakthrough in theory, gave us new insight into how these molecules interact."

The researchers anticipate demand from other groups exploring water (or other solvent) interactions, as well as both soft materials (such as polymers) and inorganic materials (oxides and metal surfaces) that are directly relevant to energy-related applications in catalysis, battery technology and photovoltaics. In addition, as x-ray free electron laser sources become available to scientists, a richer experimental data set will be available to augment theoretical findings.

A paper reporting this research titled, "Investigation of protein conformation and interactions with salts via X-ray absorption spectroscopy," appears in Proceedings of the National Academy of Sciences and is available to subscribers online (*). Co-authoring the paper with Schwartz, Prendergast and Saykally were Janel Uejio, Andrew Duffin, Alice England and Daniel Kelly.

This work at the Molecular Foundry and Advanced Light Source was supported by DOE's Office of Science. Computational resources were provided by NERSC, a DOE advanced scientific computing research user facility.

(*) www.pnas.org/content/107/32/14008.abstract

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

For more information, please click here

Contacts:
Aditi Risbud (510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Physics

Seeing quantum motion August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Record-high pressure reveals secrets of matter: The most incompressible metal osmium at static pressures above 750 GPa August 25th, 2015

Biophysics: Formation of swarms in nanosystems August 18th, 2015

Videos/Movies

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Engineers identify how to keep surfaces dry underwater: Research team is first to identify surface 'roughness' required to achieve amazing feat August 18th, 2015

Chemistry

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Software

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Academic/Education

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

JPK reports on the use of a NanoWizard® AFM-SECM system at the Université Paris Diderot looking at nanoscale biostructures August 18th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Announcements

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Tools

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic