Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Dancing in the dark: how proteins and salts interact

Simulation of the interaction between triglycine and dissolved sodium sulfite in water shows the long chain-like triglycine molecule (center) interacting directly with sulfite anions (tripods of yellow and red atoms) while also interacting via multiple hydrogen bonds (thin red or blue lines) with the surrounding water molecules (red and white sticks). Courtesy Berkeley Lab
Simulation of the interaction between triglycine and dissolved sodium sulfite in water shows the long chain-like triglycine molecule (center) interacting directly with sulfite anions (tripods of yellow and red atoms) while also interacting via multiple hydrogen bonds (thin red or blue lines) with the surrounding water molecules (red and white sticks). Courtesy Berkeley Lab

Abstract:
Scientists are getting a new look at how proteins interact with simple salts in water, and what impacts these interactions may have on protein structures at the atomic level.

Dancing in the dark: how proteins and salts interact

Berkeley, CA | Posted on August 13th, 2010

To study nanostructures in real environments, Berkeley Lab scientists have combined theoretical and experimental approaches to glimpse into a protein's interaction with simple salts in water. Enabled by x-ray absorption simulation software developed at Berkeley Lab's Molecular Foundry, these findings shed new light on how salts impact protein structure at the atomic level.

Traditional crystallographic techniques, such as x-ray diffraction, provide a profile of ordered materials with static structures. However, for dynamic or complex systems in which the atomic structure is rapidly changing, more sophisticated methods are needed. Now, Berkeley Lab scientists have applied x-ray absorption spectroscopy to study a model protein, triglycine—a short chain of three molecules of the simplest amino acid, glycine. By simulating this molecule's x-ray absorption spectrum the team has show how its chain kinks and straightens in response to ions in solution.

"Watching a molecule in solution is like watching a marionette—you can see it bending in response to making and breaking of hydrogen bonds," said David Prendergast, a staff scientist in the Theory of Nanostructures Facility at the Molecular Foundry. "A concrete knowledge of how ions influence this behavior comes from using molecular dynamics simulations, which show persistent differences in structure on nanosecond timescales. From this data we can generate x-ray absorption spectra which can then be compared with experimental results."

In a specialized x-ray absorption experiment called near edge x-ray absorption fine structure (NEXAFS), x-rays are used to probe the chemical bonding and environment of specific elements in a molecule or nanostructure, such as the nitrogen atoms in a triglycine molecule. Coupled with a liquid microjet technology developed at Berkeley Labs, NEXAFS has been previously used to examine how proteins dissolve and crystallize in the presence of various ions .

Prendergast's software can now simulate NEXAFS data by averaging a series of snapshots taken from a molecular dynamics simulation of a given molecule. This software is a critical tool for interpreting NEXAFS data from complex, dynamic systems, as the probe times in these measurements are too slow—seconds rather than nanoseconds—to reveal structural differences at the nanoscale.

"Previous studies from our group have shown the development of x-ray absorption spectroscopy of liquid microjets provides a new atom-sensitive probe of the interactions between aqueous ions, but it is the advent of this new theory that provides the first reliable molecular-level interpretation of these data," said Richard Saykally, a Berkeley Lab chemist and professor of chemistry at the University of California at Berkeley. "Here we see this new combination of theory and experiment applied to one of the most important problems in biophysical chemistry."

Prendergast says his molecular dynamics technique can be used to model x-ray spectra of a biological system with known structure to determine its local interactions, what causes it to form a particular structure, and why it takes on a particular conformation—all by simulating the spectra of a series of individual snapshots and comparing with experimental results. These simulations are computationally intensive and rely heavily on the large-scale supercomputing infrastructure provided by Berkeley Lab's National Energy Research Scientific Computing Center (NERSC).

"Although these effects are a fundamental part of nature, they are still poorly understood," said Craig Schwartz, a researcher working with Prendergast and Saykally, whose graduate work led to this publication. "The experimental sensitivity of NEXAFS, coupled with a breakthrough in theory, gave us new insight into how these molecules interact."

The researchers anticipate demand from other groups exploring water (or other solvent) interactions, as well as both soft materials (such as polymers) and inorganic materials (oxides and metal surfaces) that are directly relevant to energy-related applications in catalysis, battery technology and photovoltaics. In addition, as x-ray free electron laser sources become available to scientists, a richer experimental data set will be available to augment theoretical findings.

A paper reporting this research titled, "Investigation of protein conformation and interactions with salts via X-ray absorption spectroscopy," appears in Proceedings of the National Academy of Sciences and is available to subscribers online (*). Co-authoring the paper with Schwartz, Prendergast and Saykally were Janel Uejio, Andrew Duffin, Alice England and Daniel Kelly.

This work at the Molecular Foundry and Advanced Light Source was supported by DOE's Office of Science. Computational resources were provided by NERSC, a DOE advanced scientific computing research user facility.

(*) www.pnas.org/content/107/32/14008.abstract

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

For more information, please click here

Contacts:
Aditi Risbud (510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Superfast light source made from artificial atom April 28th, 2016

Physicists detect the enigmatic spin momentum of light April 26th, 2016

The atom without properties April 22nd, 2016

News and information

Superfast light source made from artificial atom April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Software

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

The reliability of material simulations put to test April 26th, 2016

Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations April 21st, 2016

Chemistry

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Videos/Movies

WiFi capacity doubled at less than half the size: Columbia Engineers develop the first on-chip RF circulator that doubles WiFi speeds with a single antenna -- could transform telecommunications April 18th, 2016

First-ever videos show how heat moves through materials at the nanoscale and speed of sound: Groundbreaking observations could help develop better, more efficient materials for electronics and alternative energy April 16th, 2016

Nanotubes assemble! Rice introduces 'Teslaphoresis' Reconfigured Tesla coil aligns, electrifies materials from a distance April 15th, 2016

Record-breaking steel could be used for body armor, shields for satellites April 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Announcements

Superfast light source made from artificial atom April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Tools

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Bruker Introduces First of Its Kind Dimensional Analysis System: The Novel Contour CMM™ System Fully Integrates 3D Coordinate Measurements with Nanoscale Surface Height, Texture, Waviness and Form Characterization April 26th, 2016

Bruker Introduces Dimension FastScan Pro Industrial AFM: Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples April 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic