Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fractals make better superconductors

Heat treatment improves the superconductivity of a ceramic copper oxide by creating a fractal network of connected channels of ordered oxygen defects. The green and red spheres represent the paired electrons responsible for superconductivity. Artwork by Manuel Vogtli (LCN).
Heat treatment improves the superconductivity of a ceramic copper oxide by creating a fractal network of connected channels of ordered oxygen defects. The green and red spheres represent the paired electrons responsible for superconductivity. Artwork by Manuel Vogtli (LCN).

Abstract:
A team from Rome, Grenoble and London report that the strength of the superconductivity - its ability to persist as temperature is increased- correlates in certain oxide materials with structures visible over a range of length scales. I

Fractals make better superconductors

UK | Posted on August 12th, 2010

Superconductivity, where a material conducts electricity at very low temperature with no resistance, and therefore transmission wastes virtually no energy, has applications ranging from medical scanners to maglev trains. Until now, scientists have focused on atomic-scale phenomena to explain this mysterious property of some special compounds. But in this week's Nature, a team from Rome, Grenoble and London report that the strength of the superconductivity - its ability to persist as temperature is increased- correlates in certain oxide materials with structures visible over a range of length scales. Intriguingly, these structures extend almost to the millimeter scale, and have a "fractal" nature, similar to the intricate patterns in a snowflake.
Since the discovery of superconductivity at the beginning of the last century, there has been a constant quest for improved performance in the form of higher operating temperatures and capacity to carry electrical power. A major breakthrough occurred in 1987 when two scientists from IBM discovered that oxides of copper, previously thought to be most unlikely candidates for superconductivity, superconduct at unprecedentedly high temperatures. Since then, this class of materials continues to hold the record for operating temperatures, well above the boiling temperature of inexpensive liquid nitrogen. At the same time, though, there is no agreement as to the mechanism underlying this high performance, even though a clear understanding would be extremely beneficial for engineers.

Until now, scientists have focused on structure at the nanometer (0.0000001 millimeters) - the distance between neighbouring atoms - scale as the determinant of the unusually strong superconductivity of the oxides of copper. For this week's Nature article, the researchers used the new technique of X-ray microscopy to examine a copper oxide superconductor whose internal structure could be changed via simple heat treatments - an approach employed by ceramicists over millennia to modify oxide materials.

The team discovered that the best superconductivity was obtained when the microstructure was most ‘connected', meaning that it is possible to trace a path with the same nanostructure (exhibited by oxygen atoms) over a large distance. The microstructure in this case was ‘fractal': if we were to zoom in on the material's structure at increasing levels of magnification, its appearance would remain the same.

Co-author Antonio Bianconi of the University Rome noted that "We are very excited by our results because they show that fractals, which are ubiquitous in both the biological sciences and the social sciences where they are even used to contemplate the behaviour of financial markets, now appear to have a significant impact on a fundamental property of inorganic matter, its superconductivity. " Co-author Gabriel Aeppli of the London Centre for Nanotechnology and University College London, added that "While there is no detailed theoretical explanation for what we have discovered yet, it demonstrates that classical ceramic engineering - with visible effects at near millimeter scales - can collude with quantum physics to produce the best superconductors."

The article is published in Nature (doi:10.1038/nature09260) on 12 Aug 2010. Click here (*) to see the article and associated News and Views on Nature's website

(*) www.nature.com/nature/journal/v466/n7308/full/nature09260.html

####

About London Centre for Nanotechnology
The London Centre for Nanotechnology is an interdisciplinary joint enterprise between University College London and Imperial College London. In bringing together world-class infrastructure and leading nanotechnology research activities, the Centre has the critical mass to compete with the best facilities world-wide. Research programmes are aligned to three key areas, namely Planet Care, Healthcare and Information Technology and exploit core competencies in the biomedical, physical and engineering sciences. Website: www.london-nano.com

For more information, please click here

Contacts:
UCL Press Office
David Weston
tel. +44-20 7679 7678

Copyright © London Centre for Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Possible Futures

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Academic/Education

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021

Discoveries

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Announcements

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Research partnerships

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

New hybrid structures could pave the way to more stable quantum computers: Study shows that merging a topological insulator with a monolayer superconductor could support theorized topological superconductivity October 28th, 2022

Quantum nanoscience

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project