Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New alternative to traditional semiconductors

Arthur Epstein
Arthur Epstein

Abstract:
Researchers at Ohio State University have demonstrated the first plastic computer memory device that utilizes the spin of electrons to read and write data.

New alternative to traditional semiconductors

Columbus, OH | Posted on August 10th, 2010

An alternative to traditional microelectronics, so-called "spintronics" could store more data in less space, process data faster, and consume less power.

In the August 2010 issue of the journal Nature Materials, Arthur J. Epstein and colleagues describe how they created a prototype plastic spintronic device using techniques found in the mainstream computer industry today.

At this point, the device is little more than a thin strip of dark blue organic-based magnet layered with a metallic ferromagnet and connected to two electrical leads. (A ferromagnet is a magnet made of ferrous metal such as iron. Common household refrigerator magnets are ferromagnets.) Still, the researchers successfully recorded data on it and retrieved the data by controlling the spins of the electrons with a magnetic field.

Epstein, Distinguished University Professor of physics and chemistry and director of the Institute for Magnetic and Electronic Polymers at Ohio State, described the material as a hybrid of a semiconductor that is made from organic materials and a special magnetic polymer semiconductor. As such, it is a bridge between today's computers and the all-polymer, spintronic computers that he and his partners hope to enable in the future.

Normal electronics encode computer data based on a binary code of ones and zeros, depending on whether an electron is present in a void within the material. But researchers have long known that electrons can be polarized to orient in particular directions, like a bar magnet. They refer to this orientation as spin -- either "spin up" or "spin down" -- and have been working on a way to store data using spin. The resulting electronics, dubbed spintronics, would effectively let computers store and transfer twice as much data per electron.

But higher data density is only part of the story.

"Spintronics is often just seen as a way to get more information out of an electron, but really it's about moving to the next generation of electronics," Epstein said. "We could solve many of the problems facing computers today by using spintronics."

Typical circuit boards use a lot of energy. Moving electrons through them creates heat, and it takes a lot of energy to cool them. Chip makers are limited in how closely they can pack circuits together to avoid overheating.

Flipping the spin of an electron requires less energy, and produces hardly any heat at all, he explained. That means that spintronic devices could run on smaller batteries. If they were made out of plastic, they would also be light and flexible.

"We would love to take portable electronics to a spin platform," Epstein said. "Think about soldiers in the field who have to carry heavy battery packs, or even civilian ‘road warriors' commuting to meetings. If we had a lighter weight spintronic device which operates itself at a lower energy cost, and if we could make it on a flexible polymer display, soldiers and other users could just roll it up and carry it. We see this portable technology as a powerful platform for helping people."

The magnetic polymer semiconductor in this study, vanadium tetracyanoethanide, is the first organic-based magnet that operates above room temperature. It was developed by Epstein and his long-standing collaborator Joel S. Miller of the University of Utah.
Postdoctoral researcher Jung-Woo Yoo called the new material an important milestone in spintronic research.

"Our main achievement is that we applied this polymer-based magnet semiconductor as a spin polarizer -- meaning we could save data (spin up and down) on it using a tiny magnetic field -- and a spin detector -- meaning we could read the data back," he said. "Now we are closer to constructing a device from all-organic material."

In the prototype device, electrons pass into the polymer, and a magnetic field orients them as spin up or spin down. The electrons can then pass into the conventional magnetic layer, but only if the spin of electrons there are oriented in the same way. If they are not, the resistance is too high for the electrons to pass. So the researchers were able to read spin data from their device based on whether the resistance was high or low.

Collaborators at the University of Wisconsin-Madison prepared a sample of conventional magnetic film, and Yoo and his Ohio State colleagues layered it together with the organic magnet to make a working device.

As a test, the researchers exposed the material to a magnetic field that varied in strength over time. To determine whether the material recorded the magnetic pattern and functioned as a good spin injector/detector, they measured the electric current passing through the two magnetic layers. This method is similar to the way computers read and write data to a magnetic hard drive today.

The results, Yoo said, were "textbook" -- they retrieved the magnetic data in its entirety, exactly as they stored it.

The patented technology should transfer easily to industry, he added.

"Any place that makes computer chips could do this. Plus, in this case, we made the device at room temperature, and the process is very eco-friendly."

Coauthors on the paper included Chia-Yi Chen and Vladimir Prigodin of Ohio State, and H.W. Jang, C.W. Bark, and Chang-Beom Eom of the University of Wisconsin-Madison.

This research was funded by the Air Force Office of Scientific Research, the Department of Energy, the National Science Foundation, and the Office of Naval Research.

####

For more information, please click here

Contacts:
Arthur J. Epstein
(614) 292-1133


Written by Pam Frost Gorder
(614) 292-9475

Copyright © Ohio State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Academic/Education

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

JPK reports on the use of a NanoWizard® AFM-SECM system at the Université Paris Diderot looking at nanoscale biostructures August 18th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Spintronics

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Spintronics just got faster July 20th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Memory Technology

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Superlattice design realizes elusive multiferroic properties: New design sandwiches a polar metallic oxide between an insulating material August 23rd, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Scientists achieve major breakthrough in thin-film magnetism August 17th, 2015

Announcements

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic