Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New alternative to traditional semiconductors

Arthur Epstein
Arthur Epstein

Abstract:
Researchers at Ohio State University have demonstrated the first plastic computer memory device that utilizes the spin of electrons to read and write data.

New alternative to traditional semiconductors

Columbus, OH | Posted on August 10th, 2010

An alternative to traditional microelectronics, so-called "spintronics" could store more data in less space, process data faster, and consume less power.

In the August 2010 issue of the journal Nature Materials, Arthur J. Epstein and colleagues describe how they created a prototype plastic spintronic device using techniques found in the mainstream computer industry today.

At this point, the device is little more than a thin strip of dark blue organic-based magnet layered with a metallic ferromagnet and connected to two electrical leads. (A ferromagnet is a magnet made of ferrous metal such as iron. Common household refrigerator magnets are ferromagnets.) Still, the researchers successfully recorded data on it and retrieved the data by controlling the spins of the electrons with a magnetic field.

Epstein, Distinguished University Professor of physics and chemistry and director of the Institute for Magnetic and Electronic Polymers at Ohio State, described the material as a hybrid of a semiconductor that is made from organic materials and a special magnetic polymer semiconductor. As such, it is a bridge between today's computers and the all-polymer, spintronic computers that he and his partners hope to enable in the future.

Normal electronics encode computer data based on a binary code of ones and zeros, depending on whether an electron is present in a void within the material. But researchers have long known that electrons can be polarized to orient in particular directions, like a bar magnet. They refer to this orientation as spin -- either "spin up" or "spin down" -- and have been working on a way to store data using spin. The resulting electronics, dubbed spintronics, would effectively let computers store and transfer twice as much data per electron.

But higher data density is only part of the story.

"Spintronics is often just seen as a way to get more information out of an electron, but really it's about moving to the next generation of electronics," Epstein said. "We could solve many of the problems facing computers today by using spintronics."

Typical circuit boards use a lot of energy. Moving electrons through them creates heat, and it takes a lot of energy to cool them. Chip makers are limited in how closely they can pack circuits together to avoid overheating.

Flipping the spin of an electron requires less energy, and produces hardly any heat at all, he explained. That means that spintronic devices could run on smaller batteries. If they were made out of plastic, they would also be light and flexible.

"We would love to take portable electronics to a spin platform," Epstein said. "Think about soldiers in the field who have to carry heavy battery packs, or even civilian ‘road warriors' commuting to meetings. If we had a lighter weight spintronic device which operates itself at a lower energy cost, and if we could make it on a flexible polymer display, soldiers and other users could just roll it up and carry it. We see this portable technology as a powerful platform for helping people."

The magnetic polymer semiconductor in this study, vanadium tetracyanoethanide, is the first organic-based magnet that operates above room temperature. It was developed by Epstein and his long-standing collaborator Joel S. Miller of the University of Utah.
Postdoctoral researcher Jung-Woo Yoo called the new material an important milestone in spintronic research.

"Our main achievement is that we applied this polymer-based magnet semiconductor as a spin polarizer -- meaning we could save data (spin up and down) on it using a tiny magnetic field -- and a spin detector -- meaning we could read the data back," he said. "Now we are closer to constructing a device from all-organic material."

In the prototype device, electrons pass into the polymer, and a magnetic field orients them as spin up or spin down. The electrons can then pass into the conventional magnetic layer, but only if the spin of electrons there are oriented in the same way. If they are not, the resistance is too high for the electrons to pass. So the researchers were able to read spin data from their device based on whether the resistance was high or low.

Collaborators at the University of Wisconsin-Madison prepared a sample of conventional magnetic film, and Yoo and his Ohio State colleagues layered it together with the organic magnet to make a working device.

As a test, the researchers exposed the material to a magnetic field that varied in strength over time. To determine whether the material recorded the magnetic pattern and functioned as a good spin injector/detector, they measured the electric current passing through the two magnetic layers. This method is similar to the way computers read and write data to a magnetic hard drive today.

The results, Yoo said, were "textbook" -- they retrieved the magnetic data in its entirety, exactly as they stored it.

The patented technology should transfer easily to industry, he added.

"Any place that makes computer chips could do this. Plus, in this case, we made the device at room temperature, and the process is very eco-friendly."

Coauthors on the paper included Chia-Yi Chen and Vladimir Prigodin of Ohio State, and H.W. Jang, C.W. Bark, and Chang-Beom Eom of the University of Wisconsin-Madison.

This research was funded by the Air Force Office of Scientific Research, the Department of Energy, the National Science Foundation, and the Office of Naval Research.

####

For more information, please click here

Contacts:
Arthur J. Epstein
(614) 292-1133


Written by Pam Frost Gorder
(614) 292-9475

Copyright © Ohio State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Possible Futures

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Academic/Education

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Spintronics

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices October 2nd, 2017

Memory Technology

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project