Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers develop magnetic molecular machines to deliver drugs to unhealthy cells

Images of nanoparticles (green) taken up by breast cancer cells. In the control sample (left), the magnetic field is not turned on. For the sample exposed to the magnetic field (right), an anticancer drug doxorubicin (red) is released into the cells, and the cells are killed.
Images of nanoparticles (green) taken up by breast cancer cells. In the control sample (left), the magnetic field is not turned on. For the sample exposed to the magnetic field (right), an anticancer drug doxorubicin (red) is released into the cells, and the cells are killed.

Abstract:
New nanomaterial could improve therapeutics and imaging in cancer treatment

By Jennifer Marcus

Researchers develop magnetic molecular machines to deliver drugs to unhealthy cells

Los Angeles, CA | Posted on August 10th, 2010

Scientists from UCLA's California NanoSystems Institute and Korea's Yonsei University have developed an innovative method that enables nanomachines to release drugs inside living cancer cells when activated remotely by an oscillating magnetic field.

The new system — the first to utilize a class of porous nanomaterials driven by a magnetic core — has the potential to improve both targeted drug-delivery and magnetic resonance imaging in the treatment of cancer and other diseases.

The research appears in the July issue of the Journal of the American Chemical Society.

In recent years, cancer research has increasingly focused on developing therapies that, unlike chemotherapy, target only cancer cells while leaving healthy cells unharmed. To that end, scientists have created nanomachines that can trap and release drug molecules from pores directly into individual cancer cells in response to a stimulus.

While many methods have been created for controlling how and when pores load and unload their cargos, for therapeutic applications, an external and noninvasive method of activation is preferable for the most effective results.

The new method, developed by the research groups of Jeffrey Zink, a UCLA professor of chemistry and biochemistry, and Jinwoo Cheon, a professor of chemistry at Korea's Yonsei University, uses a material that combines a framework of mesoporous silica nanoparticles with magnetic zinc-doped iron oxide nanocrystals, along with attached nanovalves that help hold drug molecules in the pores. When a magnetic-field stimulus is applied, the valves open and release the drug molecules from the pores into the target cells.

"The hydrophobic nature of the interior of the pores, as well as the ability to functionalize the silica surface with hydrophilic functionalities, makes these particles attractive for anti-cancer drug delivery," Zink said. "Adding a magnetic core to the silica-based nanoparticles is of interest for its potential applications in magnetic resonance imaging, as addition of the magnetic core may make it useful as a contrast agent. "

For this study, nanoparticles carrying the anti-cancer drug doxorubicin were introduced to and endocytosed by breast cancer cells. When the cancer cells containing the nanoparticles were then exposed to an oscillating magnetic field, cell death occurred.

"The novel magnetic-core silica nanoparticles are effective in activating nanovalves which release anti-cancer drugs when they are exposed to an oscillating magnetic field," Zink said.

The magnetic-field oscillation causes the zinc-doped iron oxide nanocrystals to heat. This increased heat causes the molecular machines to activate, and the doxorubicin in the pores is delivered into the cells.

"Magnetic nanocrystals are important in biomedical applications because they can be used for both therapeutics and imaging," said Cheon, director of the National Creative Research Initiative Center for Evolutionary Nanoparticles and the H.G. Underwood Professor of Chemistry and division head of the Nano-Medical National Core Research Center at Yonsei University.

"The ability to deliver anti-cancer drugs only to the cancer cells without affecting healthy cells is of key importance," added Cheon who is also a visiting professor at UCLA's CNSI.

Experiments for the research project were performed by UCLA graduate students Courtney Thomas and Daniel Ferris and Yonsei University graduate students Je-Hyun Lee and Eunsook Kim, who are part of the research group of professor Jeon-Soo Shin. The research team also involved Fraser Stoddard, a professor of chemistry at Northwestern University who began his collaboration with Zink while he was a professor of chemistry at UCLA. During his UCLA tenure, Stoddart served as Fred Kavli Chair of Nanosystems Sciences and director of the CNSI, positions now held by distinguished professor of chemistry Paul S. Weiss.

The next step in the research will be to examine the effects in vivo and to determine if we can use this to offer precise control over location of delivered drugs. The ultimate goal would be to develop this system to have applicability in treatment of cancer patients.

The research received support from numerous sources including the UC Toxic Substances Training and Research Program, the National Science Foundation, the NanoMedical National Core Research Center, and the Creative Research Initiative Program of Korea.

####

About California NanoSystems Institute at UCLA
The California NanoSystems Institute at UCLA is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world — atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

For more information, please click here

Contacts:
Media Contacts
Jennifer Marcus
310-267-4839

Copyright © California NanoSystems Institute at UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project