Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Turn Up Brightness on Fluorescent Probes

Yeast cells labeled with fluoromodules (top) glow brighter (bottom) when researchers incorporate dyedrons into the fluoromodule complex. The fluoromodules are expressed on the cells' surface.
Yeast cells labeled with fluoromodules (top) glow brighter (bottom) when researchers incorporate dyedrons into the fluoromodule complex. The fluoromodules are expressed on the cells' surface.

Abstract:
Development Will Open New Avenues for Research

Researchers Turn Up Brightness on Fluorescent Probes

Pittsburgh, PA | Posted on August 10th, 2010

Researchers from Carnegie Mellon University's Molecular Biosensor and Imaging Center (MBIC) are turning up the brightness on a group of fluorescent probes called fluoromodules that are used to monitor biological activities of individual proteins in real-time. This latest advance enhances their fluormodule technology by causing it to glow an order of magnitude brighter than typical fluorescent proteins. The new fluoromodules are five- to seven-times brighter than enhanced green fluorescent protein (EGFP), a development that will open new avenues for research.

In a paper published online in the Journal of the American Chemical Society, MBIC researchers unveil a new class of dendron-based fluorogenic dyes called "dyedrons," that amplify the signal emitted by their fluoromodules.

"By using concepts borrowed from chemistry, the same concepts used in things like quantum dots and light harvesting solar cells, we were able to create a structure that acts like an antenna, intensifying the fluorescence of the entire fluoromodule," said Marcel Bruchez, associate research professor of chemistry and MBIC program director.

MBIC's fluoromodules are made up of a dye called a fluorogen and a fluorgen-activating protein (FAP). The FAP is genetically expressed in a cell and linked to a protein of interest, where it remains dark until it comes into contact with its associated fluorogen. When the protein and dye bind, the complex emits a fluorescent glow, allowing researchers to easily track the protein on the cell surface and within living cells. Fluoromodules are unique in that they do not need to be washed off for specific labeling, they come in a spectrum of colors, and they are more photostable than other fluorescent proteins.

To make the fluoromodules brighter, the researchers amplified the signal of one of their existing probes. They took one of their standard fluorogens, malachite green, and coupled it with another dye called Cy3 in a complex the researchers called a "dyedron." The dyedron is based on a special type of tree-like structure called a dendron, with one malachite green molecule acting as the trunk and several Cy3 molecules acting as the branches.

The two dyes have overlapping emission and absorption spectra - Cy3 typically emits energy at a wavelength where malachite green absorbs energy - and this overlap allows the dyes to efficiently transfer energy between one another. When the Cy3 dye molecules become excited by a light source, such as a laser, they immediately "donate" their excitation energy to malachite green, boosting the signal being emitted by the malachite green.

Each dyedron is approximately 1-2 nanometers and 3000 g/mol in size. The very bright, but very small, dye particles allow the researchers to expand their live-cell imaging research. Previously, when conducting microscopy experiments using fluorescent proteins, fluoromodules and fluorescent dyes, if researchers wanted to increase the brightness, they would either increase the intensity of the laser used to visualize the proteins or label the protein being studied with numerous copies of the fluorescent tag. Both methods had the potential to alter the biology of the system being studied, either through the more intense energy coming from the laser or the increased weight caused by the multiple tags added to the protein. The new approach provides a single compact protein tag with signal enhancement provided by only modestly enlarging the targeted dye molecule.

The MBIC researchers are currently using fluoromodules to study proteins on the cell surface, and hope to take the technology inside of cells in the near future. Additionally, they will be creating dyedrons for their other existing FAP/dye complexes.

This research was funded by the National Institutes of Health (NIH) as part of the American Reinvestment and Recovery Act. MBIC is one of the NIH's National Technology Centers for Networks and Pathways. For more information, visit: www.mbic.cmu.edu.

####

For more information, please click here

Contacts:
Media Contact:
Jocelyn Duffy
412-268-9982

Copyright © Carnegie Mellon University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Possible Futures

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Academic/Education

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

BioSolar Extends Research Agreement With UCSB for Next Phase of Its Super Battery Technology: Development Effort to Continue Under the Supervision of Nobel Laureate, Dr. Alan Heeger January 13th, 2016

Nanomedicine

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Announcements

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Nanobiotechnology

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Novel nanoparticle made of common mineral may help keep tumor growth at bay February 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic