Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers Turn Up Brightness on Fluorescent Probes

Yeast cells labeled with fluoromodules (top) glow brighter (bottom) when researchers incorporate dyedrons into the fluoromodule complex. The fluoromodules are expressed on the cells' surface.
Yeast cells labeled with fluoromodules (top) glow brighter (bottom) when researchers incorporate dyedrons into the fluoromodule complex. The fluoromodules are expressed on the cells' surface.

Abstract:
Development Will Open New Avenues for Research

Researchers Turn Up Brightness on Fluorescent Probes

Pittsburgh, PA | Posted on August 10th, 2010

Researchers from Carnegie Mellon University's Molecular Biosensor and Imaging Center (MBIC) are turning up the brightness on a group of fluorescent probes called fluoromodules that are used to monitor biological activities of individual proteins in real-time. This latest advance enhances their fluormodule technology by causing it to glow an order of magnitude brighter than typical fluorescent proteins. The new fluoromodules are five- to seven-times brighter than enhanced green fluorescent protein (EGFP), a development that will open new avenues for research.

In a paper published online in the Journal of the American Chemical Society, MBIC researchers unveil a new class of dendron-based fluorogenic dyes called "dyedrons," that amplify the signal emitted by their fluoromodules.

"By using concepts borrowed from chemistry, the same concepts used in things like quantum dots and light harvesting solar cells, we were able to create a structure that acts like an antenna, intensifying the fluorescence of the entire fluoromodule," said Marcel Bruchez, associate research professor of chemistry and MBIC program director.

MBIC's fluoromodules are made up of a dye called a fluorogen and a fluorgen-activating protein (FAP). The FAP is genetically expressed in a cell and linked to a protein of interest, where it remains dark until it comes into contact with its associated fluorogen. When the protein and dye bind, the complex emits a fluorescent glow, allowing researchers to easily track the protein on the cell surface and within living cells. Fluoromodules are unique in that they do not need to be washed off for specific labeling, they come in a spectrum of colors, and they are more photostable than other fluorescent proteins.

To make the fluoromodules brighter, the researchers amplified the signal of one of their existing probes. They took one of their standard fluorogens, malachite green, and coupled it with another dye called Cy3 in a complex the researchers called a "dyedron." The dyedron is based on a special type of tree-like structure called a dendron, with one malachite green molecule acting as the trunk and several Cy3 molecules acting as the branches.

The two dyes have overlapping emission and absorption spectra - Cy3 typically emits energy at a wavelength where malachite green absorbs energy - and this overlap allows the dyes to efficiently transfer energy between one another. When the Cy3 dye molecules become excited by a light source, such as a laser, they immediately "donate" their excitation energy to malachite green, boosting the signal being emitted by the malachite green.

Each dyedron is approximately 1-2 nanometers and 3000 g/mol in size. The very bright, but very small, dye particles allow the researchers to expand their live-cell imaging research. Previously, when conducting microscopy experiments using fluorescent proteins, fluoromodules and fluorescent dyes, if researchers wanted to increase the brightness, they would either increase the intensity of the laser used to visualize the proteins or label the protein being studied with numerous copies of the fluorescent tag. Both methods had the potential to alter the biology of the system being studied, either through the more intense energy coming from the laser or the increased weight caused by the multiple tags added to the protein. The new approach provides a single compact protein tag with signal enhancement provided by only modestly enlarging the targeted dye molecule.

The MBIC researchers are currently using fluoromodules to study proteins on the cell surface, and hope to take the technology inside of cells in the near future. Additionally, they will be creating dyedrons for their other existing FAP/dye complexes.

This research was funded by the National Institutes of Health (NIH) as part of the American Reinvestment and Recovery Act. MBIC is one of the NIH's National Technology Centers for Networks and Pathways. For more information, visit: www.mbic.cmu.edu.

####

For more information, please click here

Contacts:
Media Contact:
Jocelyn Duffy
412-268-9982

Copyright © Carnegie Mellon University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

Nanomedicine

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

Sensors

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Nanobiotechnology

Nanoscale assembly line August 29th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE