Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum networds advance with entanglement of photons, solid-state qubits

"In quantum computing and quantum communication, a big question has been whether or how it would be possible to actually connect qubits, separated by long distances, to one another," says Mikhail Lukin, senior author of the new study. File photograph by Rose Lincoln/Harvard Staff Photographer
"In quantum computing and quantum communication, a big question has been whether or how it would be possible to actually connect qubits, separated by long distances, to one another," says Mikhail Lukin, senior author of the new study. File photograph by Rose Lincoln/Harvard Staff Photographer

Abstract:
Physicists demonstrate means for quantum bits to communicate over long distances

By Steve Bradt, Harvard Staff Writer

Quantum networds advance with entanglement of photons, solid-state qubits

Cambridge, MA | Posted on August 9th, 2010

A team of Harvard physicists led by Mikhail D. Lukin has achieved the first-ever quantum entanglement of photons and solid-state materials. The work marks a key advance toward practical quantum networks, as the first experimental demonstration of a means by which solid-state quantum bits, or "qubits," can communicate with one another over long distances.

Quantum networking applications such as long-distance communication and distributed computing would require the nodes that process and store quantum data in qubits to be connected to one another by entanglement, a state where two different atoms become indelibly linked such that one inherits the properties of the other.

"In quantum computing and quantum communication, a big question has been whether or how it would be possible to actually connect qubits, separated by long distances, to one another," says Lukin, professor of physics at Harvard and co-author of a paper describing the work in this week's issue of the journal Nature. "Demonstration of quantum entanglement between a solid-state material and photons is an important advance toward linking qubits together into a quantum network."

Quantum entanglement has previously been demonstrated only with photons and individual ions or atoms.

"Our work takes this one step further, showing how one can engineer and control the interaction between individual photons and matter in a solid-state material," says first author Emre Togan, a graduate student in physics at Harvard. "What's more, we show that the photons can be imprinted with the information stored in a qubit."

Quantum entanglement, famously termed "spooky action at a distance" by a skeptical Albert Einstein, is a fundamental property of quantum mechanics. It allows one to distribute quantum information over tens of thousands of kilometers, limited only by how fast and how far members of the entangled pair can propagate in space.

The new result builds upon earlier work by Lukin's group to use single atom impurities in diamonds as qubits. Lukin and colleagues have previously shown that these impurities can be controlled by focusing laser light on a diamond lattice flaw where nitrogen replaces an atom of carbon. That previous work showed that the so-called spin degrees of freedom of these impurities make excellent quantum memory.

Lukin and his co-authors now say that these impurities are also remarkable because, when excited with a sequence of finely tuned microwave and laser pulses, they can emit photons one at a time, such that photons are entangled with quantum memory. Such a stream of single photons can be used for secure transmission of information.

"Since photons are the fastest carriers of quantum information, and spin memory can robustly store quantum information for relatively long periods of time, entangled spin-photon pairs are ideal for the realization of quantum networks," Lukin says. "Such a network, a quantum analog to the conventional internet, could allow for absolutely secure communication over long distances."

####

For more information, please click here

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Physics

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Science and Technology of Advanced Materials (STAM): Reported successes and failures aid hot pursuit of superconductivity May 15th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Spintronics

New options for spintronic devices: Switching magnetism between 1 and 0 with low voltage near room temperature May 18th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Quantum Computing

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Magic wavelengths: Tuning up Rydberg atoms for quantum information applications May 12th, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Quantum nanoscience

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project