Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > For the First Time Ever, Scientists Watch an Atom’s Electrons Moving in Real Time

A classical diagram of a krypton atom (background) shows its 36 electrons arranged in shells. Researchers have measured oscillations of quantum states (foreground) in the outer orbitals of an ionized krypton atom, oscillations that drive electron motion.
A classical diagram of a krypton atom (background) shows its 36 electrons arranged in shells. Researchers have measured oscillations of quantum states (foreground) in the outer orbitals of an ionized krypton atom, oscillations that drive electron motion.

Abstract:
An international team of scientists led by groups from the Max Planck Institute of Quantum Optics (MPQ) in Garching, Germany, and from the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California at Berkeley has used ultrashort flashes of laser light to directly observe the movement of an atom's outer electrons for the first time.

For the First Time Ever, Scientists Watch an Atom’s Electrons Moving in Real Time

Berkeley, CA | Posted on August 9th, 2010

Through a process called attosecond absorption spectroscopy, researchers were able to time the oscillations between simultaneously produced quantum states of valence electrons with great precision. These oscillations drive electron motion.

"With a simple system of krypton atoms, we demonstrated, for the first time, that we can measure transient absorption dynamics with attosecond pulses," says Stephen Leone of Berkeley Lab's Chemical Sciences Division, who is also a professor of chemistry and physics at UC Berkeley. "This revealed details of a type of electronic motion - coherent superposition - that can control properties in many systems."

Leone cites recent work by the Graham Fleming group at Berkeley on the crucial role of coherent dynamics in photosynthesis as an example of its importance, noting that "the method developed by our team for exploring coherent dynamics has never before been available to researchers. It's truly general and can be applied to attosecond electronic dynamics problems in the physics and chemistry of liquids, solids, biological systems, everything."

The team's demonstration of attosecond absorption spectroscopy began by first ionizing krypton atoms, removing one or more outer valence electrons with pulses of near-infrared laser light that were typically measured on timescales of a few femtoseconds (a femtosecond is 10^-15 second, a quadrillionth of a second). Then, with far shorter pulses of extreme ultraviolet light on the 100-attosecond timescale (an attosecond is 10^-18 second, a quintillionth of a second), they were able to precisely measure the effects on the valence electron orbitals.

The results of the pioneering measurements performed at MPQ by the Leone and Krausz groups and their colleagues are reported in the August 5 issue of the journal Nature.

Parsing the fine points of valence electron motion

Valence electrons control how atoms bond with other atoms to form molecules or crystal structures, and how these bonds break and reform during chemical reactions. Changes in molecular structures occur on the scale of many femtoseconds and have often been observed with femtosecond spectroscopy, in which both Leone and Krausz are pioneers.

Zhi-Heng Loh of Leone's group at Berkeley Lab and UC Berkeley worked with Eleftherios Goulielmakis of Krausz's group to perform the experiments at MPQ. By firing a femtosecond pulse of infrared laser light through a chamber filled with krypton gas, atoms in the path of the beam were ionized by the loss of one to three valence electrons from their outermost shells.

The experimenters separately generated extreme-ultraviolet attosecond pulses (using the technique called "high harmonic generation") and sent the beam of attosecond probe pulses through the krypton gas on the same path as the near-infrared pump pulses.

By varying the time delay between the pump pulse and the probe pulse, the researchers found that subsequent states of increasing ionization were being produced at regular intervals, which turned out to be approximately equal to the time for a half cycle of the pump pulse. (The pulse is only a few cycles long; the time from crest to crest is a full cycle, and from crest to trough is a half cycle.)

"The femtosecond pulse produces a strong electromagnetic field, and ionization takes place with every half cycle of the pulse," Leone says. "Therefore little bursts of ions are coming out every half cycle."

Although expected from theory, these isolated bursts were not resolved in the experiment. The attosecond pulses, however, could precisely measure the production of the ionization, because ionization - the removal of one or more electrons - leaves gaps or "holes," unfilled orbitals that the ultrashort pulses can probe.

The attosecond pulses do so by exciting electrons from lower energy orbitals to fill the gap in krypton's outermost orbital - a direct result of the absorption of the transient attosecond pulses by the atoms. After the "long" femtosecond pump pulse liberates an electron from the outermost orbital (designated 4p), the short probe pulse boosts an electron from an inner orbital (designated 3d), leaving behind a hole in that orbital while sensing the dynamics of the outermost orbital.

In singly charged krypton ions, two electronic states are formed. A wave-packet of electronic motion is observed between these two states, indicating that the ionization process forms the two states in what's known as quantum coherence.

Says Leone, "There is a continual ‘orbital flopping' between the two states, which interfere with each other. A high degree of interference is called coherence." Thus when the attosecond probe pulse clocks the outer valence orbitals, it is really clocking the high degree of coherence in the orbital motion caused by ionization.

Indispensable attosecond pulses

"When the bursts of ions are made quickly enough, with just a few cycles of the ionization pulse, we observe a high degree of coherence," Leone says. "Theoretically, however, with longer ionization pulses the production of the ions gets out of phase with the period of the electron wave-packet motion, as our work showed."

So after just a few cycles of the pump pulse, the coherence is washed out. Thus, says Leone, "Without very short, attosecond-scale probe pulses, we could not have measured the degree of coherence that resulted from ionization."

The physical demonstration of attosecond transient absorption by the combined efforts of the Leone and Krausz groups and their colleagues will, in Leone's words, "allow us to unravel processes within and among atoms, molecules, and crystals on the electronic timescale" - processes that previously could only be hinted at with studies on the comparatively languorous femtosecond timescale.

"Real-time observation of valence electron motion," by Eleftherios Goulielmakis, Zhi-Heng Loh, Adrian Wirth, Robin Santra, Nina Rohringer, Vladislav Yakovlev, Sergey Zherebtsov, Thomas Pfeifer, Abdallah Azzeer, Matthias Kling, Stephen Leone, and Ferenc Krausz, appears in the 5 August 2010 issue of the journal Nature. This work was supported by the Max Planck Society, King Saud University, and the Munich Center for Advanced Photonics. Stephen Leone's group is supported by the Air Force Office of Scientific Research, the National Science Foundation, and U.S. Department of Energy's Office of Science. Theoretical modeling was led by Robin Santra, who is supported by DOE's Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory provides solutions to the world’s most urgent scientific challenges including clean energy, climate change, human health, novel materials, and a better understanding of matter and force in the universe. It is a world leader in improving our lives and knowledge of the world around us through innovative science, advanced computing, and technology that makes a difference. Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science.

For more information, please click here

Contacts:
Paul Preuss
510-486-6249

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Academic/Education

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Global 450 consortium announces new general manager of internal operations: TSMC’s Cheng-Chung Chien Receives Unanimous Support, Brings History of Innovation and Efficiency to Global Consortium of Companies Driving Industry Transition to 450mm Wafer Technology March 26th, 2014

NanoTecNexus to Host "Chemistry of Wine" Fundraiser in Support of STEM Education - Collaborations Key to Success - March 20th, 2014

Announcements

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Tools

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Malvern reports on the publication of the 1000th peer-reviewed paper to cite NanoSight’s Nanoparticle Tracking Analysis, NTA April 16th, 2014

JPK announces expansion of its global sales and service activities in China and USA April 15th, 2014

Research partnerships

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Carbon nanotubes grow in combustion flames April 1st, 2014

Never say never in the nano-world March 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE