Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Magnolia Solar Corporation Announces Second U.S. Air Force Award to Develop Ultra High Efficiency Quantum Dot Solar Cells

Abstract:
Magnolia Solar Corporation (MGLT 0.55, 0.00, 0.00%) ("Magnolia Solar"), a developer of high-performance, thin-film photovoltaic modules for defense and commercial applications, announced today that its wholly owned subsidiary, Magnolia Solar, Inc., recently received a second Phase I SBIR / STTR Program from the United States Air Force. This award is to develop high efficiency, thin-film quantum dot solar cells for defense applications.

Magnolia Solar Corporation Announces Second U.S. Air Force Award to Develop Ultra High Efficiency Quantum Dot Solar Cells

Woburn, MA | Posted on August 4th, 2010

The use of quantum dots in thin-film cells has the potential to produce very high efficiency single junction solar cells. Current technologies typically use multiple junctions (e.g. triple-junction solar cells) to produce high efficiency solar cells for defense applications. The Magnolia approach being developed under this award will allow significantly lower costs for the next generation thin-film solar cells with ultra high efficiency.

Dr. Ashok K. Sood, President and CEO of Magnolia Solar Corporation, commented, "This second program from the Air Force adds important core capabilities to our solar cell development effort. This technology will complement the solar cell development work underway at Magnolia under previous funding from NYSERDA, the U.S. Air Force, and other sources. We are continuing on a path to develop our core technologies for nanostructure/quantum dot based high efficiency thin-film solar cells which have applications in both defense and commercial markets."

Forward-Looking Statements: This release contains forward-looking statements, including, without limitation, statements concerning our business and possible or assumed future results of operations. Our actual results could differ materially from those anticipated in the forward-looking statements for many reasons including: our ability to continue as a going concern, adverse economic changes affecting markets we serve; competition in our markets and industry segments; our timing and the profitability of entering new markets; greater than expected costs, customer acceptance of our products or difficulties related to our integration of the businesses we may acquire; and other risks and uncertainties as may be detailed from time to time in our public announcements and SEC filings. Although we believe the expectations reflected in the forward-looking statements are reasonable, they relate only to events as of the date on which the statements are made, and our future results, levels of activity, performance or achievements may not meet these expectations. We do not intend to update any of the forward-looking statements after the date of this document to conform these statements to actual results or to changes in our expectations, except as required by law.

####

About Magnolia Solar Corporation
Magnolia Solar Corporation, through its wholly-owned subsidiary, Magnolia Solar, Inc., is commercializing its nanotechnology-based, high-efficiency, thin-film technologies that can be deposited on a variety of different substrates. This technology has the ability to capture a larger part of the solar spectrum (Ultraviolet, Visible and infrared) to produce high efficiency solar cells, and incorporates a unique nanostructure-based antireflection coating technology to further increase solar cell performance. Magnolia Solar's long term goal is to becoming a highly competitive, low cost provider of thin-film photovoltaic modules for defense and commercial markets.

For more information, please click here

Contacts:
Ronald J. Blekicki
1-303-494-3617

Copyright © Magnolia Solar Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Thin films

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Picosun ALD breaks through in medical technology June 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Quantum Dots/Rods

Producing spin-entangled electrons July 2nd, 2015

Philips Introduces Quantum Dot TV with Color IQ™ Technology from QD Vision: Manufacturer is first to offer quantum dot displays for both TVs and monitors June 30th, 2015

Biomanufacturing of CdS quantum dots: A bacterial method for the low-cost, environmentally-friendly synthesis of aqueous soluble quantum dot nanocrystals June 24th, 2015

Iranian Researchers Model, Design Optical Switches June 13th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project