Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Magnolia Solar Corporation Announces Second U.S. Air Force Award to Develop Ultra High Efficiency Quantum Dot Solar Cells

Abstract:
Magnolia Solar Corporation (MGLT 0.55, 0.00, 0.00%) ("Magnolia Solar"), a developer of high-performance, thin-film photovoltaic modules for defense and commercial applications, announced today that its wholly owned subsidiary, Magnolia Solar, Inc., recently received a second Phase I SBIR / STTR Program from the United States Air Force. This award is to develop high efficiency, thin-film quantum dot solar cells for defense applications.

Magnolia Solar Corporation Announces Second U.S. Air Force Award to Develop Ultra High Efficiency Quantum Dot Solar Cells

Woburn, MA | Posted on August 4th, 2010

The use of quantum dots in thin-film cells has the potential to produce very high efficiency single junction solar cells. Current technologies typically use multiple junctions (e.g. triple-junction solar cells) to produce high efficiency solar cells for defense applications. The Magnolia approach being developed under this award will allow significantly lower costs for the next generation thin-film solar cells with ultra high efficiency.

Dr. Ashok K. Sood, President and CEO of Magnolia Solar Corporation, commented, "This second program from the Air Force adds important core capabilities to our solar cell development effort. This technology will complement the solar cell development work underway at Magnolia under previous funding from NYSERDA, the U.S. Air Force, and other sources. We are continuing on a path to develop our core technologies for nanostructure/quantum dot based high efficiency thin-film solar cells which have applications in both defense and commercial markets."

Forward-Looking Statements: This release contains forward-looking statements, including, without limitation, statements concerning our business and possible or assumed future results of operations. Our actual results could differ materially from those anticipated in the forward-looking statements for many reasons including: our ability to continue as a going concern, adverse economic changes affecting markets we serve; competition in our markets and industry segments; our timing and the profitability of entering new markets; greater than expected costs, customer acceptance of our products or difficulties related to our integration of the businesses we may acquire; and other risks and uncertainties as may be detailed from time to time in our public announcements and SEC filings. Although we believe the expectations reflected in the forward-looking statements are reasonable, they relate only to events as of the date on which the statements are made, and our future results, levels of activity, performance or achievements may not meet these expectations. We do not intend to update any of the forward-looking statements after the date of this document to conform these statements to actual results or to changes in our expectations, except as required by law.

####

About Magnolia Solar Corporation
Magnolia Solar Corporation, through its wholly-owned subsidiary, Magnolia Solar, Inc., is commercializing its nanotechnology-based, high-efficiency, thin-film technologies that can be deposited on a variety of different substrates. This technology has the ability to capture a larger part of the solar spectrum (Ultraviolet, Visible and infrared) to produce high efficiency solar cells, and incorporates a unique nanostructure-based antireflection coating technology to further increase solar cell performance. Magnolia Solar's long term goal is to becoming a highly competitive, low cost provider of thin-film photovoltaic modules for defense and commercial markets.

For more information, please click here

Contacts:
Ronald J. Blekicki
1-303-494-3617

Copyright © Magnolia Solar Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Thin films

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

Stress-free ALD from Picosun August 28th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Energy

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Quantum Dots/Rods

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Individual quantum dots imaged in 3-D for first time February 28th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Solar/Photovoltaic

September 5th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project