Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanofibers Help Scientists Study Brain Cancer In The Lab

Abstract:
Cancer and engineering scientists at The Ohio State University are collaborating to create molecule-sized nanofibers to mimic the structure of white matter in the brain. By combining nanotechnology with a medically-approved polymer, researchers are able to study the invasive behavior of tumor cells.

Nanofibers Help Scientists Study Brain Cancer In The Lab

Columbus, OH | Posted on August 3rd, 2010

The nanofibers are used to produce a more natural, three-dimensional environment for studying cancer cells outside the brain, and for testing potential drugs to treat this deadly disease.

Malignant brain tumor cells often migrate into surrounding healthy brain tissue, making these tumors extremely difficult or impossible to cure even after surgery, radiation and chemotherapy. These highly migratory cells follow fibrous tracks that are part of the brain's neural topography. Migratory cells resist clinical treatments and often produce a fatal tumor recurrence.

Mariano Viapiano, a researcher at The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) is collaborating with John Lannutti, professor of materials science and engineering in Ohio State's College of Engineering, and others, to develop biologically compatible nanofibers that mimic the neural topography used by migratory tumor cells.

"We were trying to improve our understanding of how cancer invades in the brain and other organs," says Viapiano, a member of the Center for Molecular Neurobiology and the Molecular Biology and Cancer Genetics Research Program at OSUCCC-James. "We have found the behavior of tumor cells is much more similar to the behavior in the real tumor when we grow them on these nanofibers instead of conventional, rigid plastic petri dishes."

The nanofibers are so small that their general structure can only be observed in a scanning electron microscope. For perspective, it would take nearly 100 nanofibers side-by-side to equal the width of one human hair.

For generations, scientists have used petri dishes to grow living cells in the laboratory. But the cancer cells they observed and treated in this two-dimensional environment behaved much differently than they did in three-dimensional human tissue.

In contrast, nanofibers form spider web-like three-dimensional cell cultures in which cancer cells move and climb much as they do in human tissue.

"We want to analyze cells behaving in a manner more representative to how they behave in patients," said Viapiano, who is an assistant professor of neurological surgery in the College of Medicine. "This is a significant improvement because it is giving us a new environment to culture the cells."

####

About Ohio State University Comprehensive Cancer Center
The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (cancer.osu.edu) is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

For more information, please click here

Contacts:
Eileen Scahill
Medical Center Public Affairs and Media Relations
614-293-3737

Copyright © Ohio State University Comprehensive Cancer Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Nanomedicine

New chip promising for tumor-targeting research September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Nanobiotechnology

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE