Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanofibers Help Scientists Study Brain Cancer In The Lab

Abstract:
Cancer and engineering scientists at The Ohio State University are collaborating to create molecule-sized nanofibers to mimic the structure of white matter in the brain. By combining nanotechnology with a medically-approved polymer, researchers are able to study the invasive behavior of tumor cells.

Nanofibers Help Scientists Study Brain Cancer In The Lab

Columbus, OH | Posted on August 3rd, 2010

The nanofibers are used to produce a more natural, three-dimensional environment for studying cancer cells outside the brain, and for testing potential drugs to treat this deadly disease.

Malignant brain tumor cells often migrate into surrounding healthy brain tissue, making these tumors extremely difficult or impossible to cure even after surgery, radiation and chemotherapy. These highly migratory cells follow fibrous tracks that are part of the brain's neural topography. Migratory cells resist clinical treatments and often produce a fatal tumor recurrence.

Mariano Viapiano, a researcher at The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) is collaborating with John Lannutti, professor of materials science and engineering in Ohio State's College of Engineering, and others, to develop biologically compatible nanofibers that mimic the neural topography used by migratory tumor cells.

"We were trying to improve our understanding of how cancer invades in the brain and other organs," says Viapiano, a member of the Center for Molecular Neurobiology and the Molecular Biology and Cancer Genetics Research Program at OSUCCC-James. "We have found the behavior of tumor cells is much more similar to the behavior in the real tumor when we grow them on these nanofibers instead of conventional, rigid plastic petri dishes."

The nanofibers are so small that their general structure can only be observed in a scanning electron microscope. For perspective, it would take nearly 100 nanofibers side-by-side to equal the width of one human hair.

For generations, scientists have used petri dishes to grow living cells in the laboratory. But the cancer cells they observed and treated in this two-dimensional environment behaved much differently than they did in three-dimensional human tissue.

In contrast, nanofibers form spider web-like three-dimensional cell cultures in which cancer cells move and climb much as they do in human tissue.

"We want to analyze cells behaving in a manner more representative to how they behave in patients," said Viapiano, who is an assistant professor of neurological surgery in the College of Medicine. "This is a significant improvement because it is giving us a new environment to culture the cells."

####

About Ohio State University Comprehensive Cancer Center
The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (cancer.osu.edu) is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

For more information, please click here

Contacts:
Eileen Scahill
Medical Center Public Affairs and Media Relations
614-293-3737

Copyright © Ohio State University Comprehensive Cancer Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GWs new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Announcements

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Nanobiotechnology

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project