Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Humble protein, nanoparticles tag-team to kill cancer cells

Images of Ramos cells targeted with nanoparticles. Particles carrying human transferrin (white dots, above image and close-up insert) were able to zero in on, attach to and enter cells (grey spheres).
Images of Ramos cells targeted with nanoparticles. Particles carrying human transferrin (white dots, above image and close-up insert) were able to zero in on, attach to and enter cells (grey spheres).

Abstract:
A normally benign protein found in the human body appears to be able - when paired with nanoparticles - to zero in on and kill certain cancer cells, without having to also load those particles with chemotherapy drugs.

Humble protein, nanoparticles tag-team to kill cancer cells

Chapel Hill, NC | Posted on August 3rd, 2010

The finding could lead to a new strategy for targeted cancer therapies, according to the University of North Carolina at Chapel Hill scientists who made the discovery.

However, they also cautioned that the result raises concerns about unanticipated "off-target" effects when designing nano-delivery agents.

Transferrin, the fourth most abundant protein in human blood, has been used as a tumor-targeting agent for delivering cancer drugs for almost two decades. The protein's receptor is over-expressed on the surface of many rapidly growing cancers cells, so treatments combined with transferrin ligands are able to seek out and bind to them. Nanoparticles infused with transferrin have long been regarded as safe and nontoxic.

Now, UNC researchers have shown that, surprisingly, attaching transferrin to a nanoparticle surface can effectively and selectively target and kill B-cell lymphoma cells, found in an aggressive form of non-Hodgkin's lymphoma. It had been thought that nanoparticles would also need to carry toxic chemotherapy agents to have such an effect.

The discovery was made by a team of researchers led by Joseph DeSimone, Ph.D., Chancellor's Eminent Professor of Chemistry in UNC's College of Arts and Sciences and William R. Kenan Jr. Distinguished Professor of Chemical Engineering at North Carolina State University, along with Jin Wang, Ph.D., and Shaomin Tian, Ph.D., in DeSimone's lab. Their findings appear in this week's online issue of the Journal of the American Chemical Society.

The scientists say the result is an interesting development in the field of nanomedicine, which researchers hope will eventually provide widely accepted alternatives - or replacements - to chemo and radiation treatment. Those therapies, while considered the most effective methods currently available for tackling cancer, also often damage healthy tissues and organs as a side effect.

Using PRINT (Particle Replication in Non-wetting Templates) technology — a technique invented in DeSimone's lab that allows scientists to produce nanoparticles with well-defined size and shape — the UNC researchers produced biocompatible nanoparticles bonded with human transferrin, and demonstrated that the particles can safely and accurately recognize a broad spectrum of cancers. As well as B-cell lymphoma cells, the particles also effectively targeted non-small cell lung, ovarian, liver and prostate cancer cells.

Generally, the nanoparticles were non-toxic to such cells and should therefore be able to be loaded with standard chemotherapy agents and used to hone in on those cancers.

However, for Ramos cells, an aggressive form of B-cell lymphoma, the transferrin-bonded PRINT nanoparticles not only recognized them but also induced cell death. Meanwhile, free transferrin - which was incubated with Ramos cells but not bound to any nanoparticles - did not kill any Ramos cells, even at high concentrations.

Researchers are carrying out further studies to determine how and why the transferrin-carrying nanoparticles proved toxic to the Ramos cells but not the other tumor types.

"Although this is potentially exciting for the development of entirely new strategies for treating certain types of lymphomas with potentially lower side effects, this study also raises concerns for unanticipated off-target effects when one is designing targeted chemotherapy agents for other types of cancers," said DeSimone. DeSimone is also a member of UNC's Lineberger Comprehensive Cancer Center and the co-principal investigator for the Carolina Center for Cancer Nanotechnology Excellence. He was also recently appointed as an adjunct member at New York's Memorial Sloan-Kettering Cancer Center.

Other UNC coauthors were Robby A. Petros, Ph.D., and Mary E. Napier, Ph.D., from the chemistry department and the Carolina Center for Cancer Nanotechnology Excellence.

The study, "The Complex Role of Multivalency in Nanoparticles Targeting the Transferrin Receptor for Cancer Therapies," was funded by the National Science Foundation; the National Institutes for Health; the Carolina Center for Cancer Nanotechnology Excellence; the William R. Kenan Professorship; Liquidia Technologies; and the North Carolina University Cancer Research Fund, established by the N.C General Assembly to help prevent and treat cancer across the state.

####

For more information, please click here

Contacts:
News Services contact:
Patric Lane
(919) 962-8596

Copyright © University of North Carolina at Chapel Hill

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Nanomedicine

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Nanobiotechnology

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Researchers first to show that Saharan silver ants can control electromagnetic waves over an extremely broad range of the electromagnetic spectrum—findings may lead to biologically inspired coatings for passive radiative cooling of objects June 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project