Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Livermore's DTEM earns innovation award from Microscopy Today

Working with the dynamic transmission electron microscope (DTEM). From left: Bryan Reed, Melissa Santala, William DeHope, Thomas LaGrange, Joseph McKeown.
Photo by Jacqueline McBride/LLNL
Working with the dynamic transmission electron microscope (DTEM). From left: Bryan Reed, Melissa Santala, William DeHope, Thomas LaGrange, Joseph McKeown. Photo by Jacqueline McBride/LLNL

Abstract:
An innovation that can help scientists observe a reaction moving at greater than 10 meters per second, with a few nanometers spatial resolution, is a feat some would say is nearly impossible.

But not the Lawrence Livermore team of scientists who developed the dynamic transmission electron microscope (DTEM).

Livermore's DTEM earns innovation award from Microscopy Today

Livermore, CA | Posted on August 2nd, 2010

DTEM's ability to let researchers peer into the heart of scientific phenomena while it's happening has earned it one of the 10 winning microscopy innovations in the 2010 Microscopy Today Innovation Award competition.

Microscopy Today's MT-10 Awards recognize the best new products and methods across the entire field of microscopy. Five of the awards are primarily related to the life sciences and five are related to the physical sciences. In each of these areas, there may be interesting new developments in light microscopy, scanning probe microscopy, electron microscopy, ion microscopy, acoustic microscopy, microanalysis, specimen preparation, etc. These awards honor the best developments in microscopy from the previous calendar year.

The award will be given to the team at the 2010 Microscopy & Microanalysis meeting held Aug. 1-5 in Portland, Ore. Descriptions of the winning products and methods will be published in the print and digital editions of the September 2010 issue of Microscopy Today.

Unlike traditional transmission electron microscopes that are generally restricted to capturing images before and after some rapid transformation (such as a material deforming or the growth of a nanowire), the DTEM captures images during the process itself. DTEM goes beyond merely revealing that a transformation has happened; it provides crucial details of how, when and where it happened. For example, while a conventional electron microscope can produce static images of viruses before and after they have attacked cells, the DTEM could potentially capture a virus in the process of joining to a membrane and releasing its genetic material in a rapid sequence of short-exposure images.

The DTEM is able to take snapshots of the dynamics that occur in samples of material under strenuous conditions - extreme temperature, applied pressure, surface corrosion - creating a visual record of microstructural features as they rapidly evolve.

It combines all of the powerful techniques of the standard TEM with nanosecond time resolution for capturing dynamic processes while they occur with single-shot measurements. (The term "single shot" means the gathering of the required data, diffraction pattern or image, using only one bunch of electrons.)

The Livermore microscope already has produced new levels of scientific understanding of nanostructure growth, phase transformations and chemical reactions. But this is only the beginning.

DTEM provides an entirely new way of exploring material processes with a range of potential applications that have just been undertaken.

In a recent experiment, the team was able to peer into the inner workings of catalyst nanoparticles 3,000 times smaller than a human hair within nanoseconds.

The findings point the way toward future work that could greatly improve catalyst efficiency in a variety of processes that are crucial to the world's energy security, such as petroleum catalysis and catalyst-based nanomaterial growth for next-generation rechargeable batteries.

The research is funded by the Department of Energy's Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

Members of the team include: Wayne King, Michael Armstrong, Nigel Browning, Geoffrey Campbell, William DeHope, Judy Kim, Thomas LaGrange, Benjamin Pyke, Bryan Reed, Richard Shuttlesworth, Brent Stuart and former LLNL employees J. Bradley Pesavento Mitra Taheri and Benjamin Torralva.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Chemistry

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Possible Futures

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Tools

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Energy

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Going green with nanotechnology December 21st, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

One step closer to reality: Devices that convert heat into electricity: Composite material yields 10 times -- or higher -- voltage output January 4th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes December 29th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project