Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Livermore's DTEM earns innovation award from Microscopy Today

Working with the dynamic transmission electron microscope (DTEM). From left: Bryan Reed, Melissa Santala, William DeHope, Thomas LaGrange, Joseph McKeown.
Photo by Jacqueline McBride/LLNL
Working with the dynamic transmission electron microscope (DTEM). From left: Bryan Reed, Melissa Santala, William DeHope, Thomas LaGrange, Joseph McKeown. Photo by Jacqueline McBride/LLNL

Abstract:
An innovation that can help scientists observe a reaction moving at greater than 10 meters per second, with a few nanometers spatial resolution, is a feat some would say is nearly impossible.

But not the Lawrence Livermore team of scientists who developed the dynamic transmission electron microscope (DTEM).

Livermore's DTEM earns innovation award from Microscopy Today

Livermore, CA | Posted on August 2nd, 2010

DTEM's ability to let researchers peer into the heart of scientific phenomena while it's happening has earned it one of the 10 winning microscopy innovations in the 2010 Microscopy Today Innovation Award competition.

Microscopy Today's MT-10 Awards recognize the best new products and methods across the entire field of microscopy. Five of the awards are primarily related to the life sciences and five are related to the physical sciences. In each of these areas, there may be interesting new developments in light microscopy, scanning probe microscopy, electron microscopy, ion microscopy, acoustic microscopy, microanalysis, specimen preparation, etc. These awards honor the best developments in microscopy from the previous calendar year.

The award will be given to the team at the 2010 Microscopy & Microanalysis meeting held Aug. 1-5 in Portland, Ore. Descriptions of the winning products and methods will be published in the print and digital editions of the September 2010 issue of Microscopy Today.

Unlike traditional transmission electron microscopes that are generally restricted to capturing images before and after some rapid transformation (such as a material deforming or the growth of a nanowire), the DTEM captures images during the process itself. DTEM goes beyond merely revealing that a transformation has happened; it provides crucial details of how, when and where it happened. For example, while a conventional electron microscope can produce static images of viruses before and after they have attacked cells, the DTEM could potentially capture a virus in the process of joining to a membrane and releasing its genetic material in a rapid sequence of short-exposure images.

The DTEM is able to take snapshots of the dynamics that occur in samples of material under strenuous conditions - extreme temperature, applied pressure, surface corrosion - creating a visual record of microstructural features as they rapidly evolve.

It combines all of the powerful techniques of the standard TEM with nanosecond time resolution for capturing dynamic processes while they occur with single-shot measurements. (The term "single shot" means the gathering of the required data, diffraction pattern or image, using only one bunch of electrons.)

The Livermore microscope already has produced new levels of scientific understanding of nanostructure growth, phase transformations and chemical reactions. But this is only the beginning.

DTEM provides an entirely new way of exploring material processes with a range of potential applications that have just been undertaken.

In a recent experiment, the team was able to peer into the inner workings of catalyst nanoparticles 3,000 times smaller than a human hair within nanoseconds.

The findings point the way toward future work that could greatly improve catalyst efficiency in a variety of processes that are crucial to the world's energy security, such as petroleum catalysis and catalyst-based nanomaterial growth for next-generation rechargeable batteries.

The research is funded by the Department of Energy's Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

Members of the team include: Wayne King, Michael Armstrong, Nigel Browning, Geoffrey Campbell, William DeHope, Judy Kim, Thomas LaGrange, Benjamin Pyke, Bryan Reed, Richard Shuttlesworth, Brent Stuart and former LLNL employees J. Bradley Pesavento Mitra Taheri and Benjamin Torralva.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Graphene decharging and molecular shielding February 8th, 2016

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Possible Futures

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

A fast solidification process makes material crackle February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Academic/Education

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

BioSolar Extends Research Agreement With UCSB for Next Phase of Its Super Battery Technology: Development Effort to Continue Under the Supervision of Nobel Laureate, Dr. Alan Heeger January 13th, 2016

Announcements

Scientists create laser-activated superconductor February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Tools

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

Energy

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Canadian physicists discover new properties of superconductivity February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists create laser-activated superconductor February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic