Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Livermore's DTEM earns innovation award from Microscopy Today

Working with the dynamic transmission electron microscope (DTEM). From left: Bryan Reed, Melissa Santala, William DeHope, Thomas LaGrange, Joseph McKeown.
Photo by Jacqueline McBride/LLNL
Working with the dynamic transmission electron microscope (DTEM). From left: Bryan Reed, Melissa Santala, William DeHope, Thomas LaGrange, Joseph McKeown. Photo by Jacqueline McBride/LLNL

Abstract:
An innovation that can help scientists observe a reaction moving at greater than 10 meters per second, with a few nanometers spatial resolution, is a feat some would say is nearly impossible.

But not the Lawrence Livermore team of scientists who developed the dynamic transmission electron microscope (DTEM).

Livermore's DTEM earns innovation award from Microscopy Today

Livermore, CA | Posted on August 2nd, 2010

DTEM's ability to let researchers peer into the heart of scientific phenomena while it's happening has earned it one of the 10 winning microscopy innovations in the 2010 Microscopy Today Innovation Award competition.

Microscopy Today's MT-10 Awards recognize the best new products and methods across the entire field of microscopy. Five of the awards are primarily related to the life sciences and five are related to the physical sciences. In each of these areas, there may be interesting new developments in light microscopy, scanning probe microscopy, electron microscopy, ion microscopy, acoustic microscopy, microanalysis, specimen preparation, etc. These awards honor the best developments in microscopy from the previous calendar year.

The award will be given to the team at the 2010 Microscopy & Microanalysis meeting held Aug. 1-5 in Portland, Ore. Descriptions of the winning products and methods will be published in the print and digital editions of the September 2010 issue of Microscopy Today.

Unlike traditional transmission electron microscopes that are generally restricted to capturing images before and after some rapid transformation (such as a material deforming or the growth of a nanowire), the DTEM captures images during the process itself. DTEM goes beyond merely revealing that a transformation has happened; it provides crucial details of how, when and where it happened. For example, while a conventional electron microscope can produce static images of viruses before and after they have attacked cells, the DTEM could potentially capture a virus in the process of joining to a membrane and releasing its genetic material in a rapid sequence of short-exposure images.

The DTEM is able to take snapshots of the dynamics that occur in samples of material under strenuous conditions - extreme temperature, applied pressure, surface corrosion - creating a visual record of microstructural features as they rapidly evolve.

It combines all of the powerful techniques of the standard TEM with nanosecond time resolution for capturing dynamic processes while they occur with single-shot measurements. (The term "single shot" means the gathering of the required data, diffraction pattern or image, using only one bunch of electrons.)

The Livermore microscope already has produced new levels of scientific understanding of nanostructure growth, phase transformations and chemical reactions. But this is only the beginning.

DTEM provides an entirely new way of exploring material processes with a range of potential applications that have just been undertaken.

In a recent experiment, the team was able to peer into the inner workings of catalyst nanoparticles 3,000 times smaller than a human hair within nanoseconds.

The findings point the way toward future work that could greatly improve catalyst efficiency in a variety of processes that are crucial to the world's energy security, such as petroleum catalysis and catalyst-based nanomaterial growth for next-generation rechargeable batteries.

The research is funded by the Department of Energy's Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

Members of the team include: Wayne King, Michael Armstrong, Nigel Browning, Geoffrey Campbell, William DeHope, Judy Kim, Thomas LaGrange, Benjamin Pyke, Bryan Reed, Richard Shuttlesworth, Brent Stuart and former LLNL employees J. Bradley Pesavento Mitra Taheri and Benjamin Torralva.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

Chemistry

Creating new materials with quantum effects for electronics January 29th, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Announcements

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Tools

Hiden Gas Analysers at PITTCON 2015 | Visit us on Booth No. 1127 January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Energy

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Nexeon Board Changes Announced January 29th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

2015 Nanonics Image Contest January 29th, 2015

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE