Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Novel bee venom derivative forms a nanoparticle 'smart bomb' to target cancer cells

Abstract:
New research in the FASEB Journal shows that a peptide derived from bee venom can deliver liposomes bearing drugs or diagnostic dyes to specific cells or tissues

Novel bee venom derivative forms a nanoparticle 'smart bomb' to target cancer cells

Bethesda, MD | Posted on August 2nd, 2010

The next time you are stung by a bee, here's some consolation: a toxic protein in bee venom, when altered, significantly improves the effectiveness liposome-encapsulated drugs or dyes, such as those already used to treat or diagnose cancer. This research, described in the August 2010 print issue of the FASEB Journal (www.fasebj.org), shows how modified melittin may revolutionize treatments for cancer and perhaps other conditions, such as arthritis, cardiovascular disease, and serious infections.

"This type of transporter agent may help in the design and use of more personalized treatment regimens that can be selectively targeted to tumors and other diseases," said Samuel A. Wickline, Ph.D., a researcher involved in the work from the Consortium for Translational Research in Advanced Imaging and Nanomedicine (C-TRAIN) at the Washington University School of Medicine in St. Louis, Missouri.

To make this discovery, Wickline and colleagues designed and tested variations of the melittin protein to derive a stable compound that could be inserted into liposomal nanoparticles and into living cells without changing or harming them. They then tested the ability of this protein, or "transporter agent," to attach to different therapeutic compounds and enhance drug therapy without causing harmful side effects. In addition, their results suggest that the base compound which is used to create the transporter agent may improve tumor therapy as well.

"Our journal is abuzz in a hive of bee-related discoveries. Just last month, we published research showing for the first time how honey kills bacteria. This month, the Wickline study shows how bee venom peptides can form "smart bombs" that deliver liposomal nanoparticles directly to their target, without collateral damage," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal.

Receive monthly highlights from the FASEB Journal by e-mail. Sign up at www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

Details: Hua Pan, Jacob W. Myerson, Olena Ivashyna, Neelesh R. Soman, Jon N. Marsh, Joshua L. Hood, Gregory M. Lanza, Paul H. Schlesinger, and Samuel A. Wickline. Lipid membrane editing with peptide cargo linkers in cells and synthetic nanostructures. FASEB J. 2010 24: 2928-2937. doi: 10.1096/fj.09-153130 www.fasebj.org/cgi/content/abstract/24/8/2928

####

About Federation of American Societies for Experimental Biology
FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

For more information, please click here

Contacts:
Cody Mooneyhan

301-634-7104

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Possible Futures

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Nanomedicine

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Nanobiotechnology

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic