Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Empa grows 'sea urchin'-shaped structures

These are "sea urchins" made of tiny polystyrene balls, with zinc oxide nanowire "spines" are created using a simple electrochemical process. Credit: Empa
These are "sea urchins" made of tiny polystyrene balls, with zinc oxide nanowire "spines" are created using a simple electrochemical process. Credit: Empa

Abstract:
More efficient photocells thanks to nanostructured surfaces

Empa grows 'sea urchin'-shaped structures

Switzerland | Posted on August 1st, 2010

Processes which lend materials new characteristics are generally complicated and therefore often rather difficult to reproduce. So surprise turns to astonishment when scientists report on new methods which not only produce outstanding results despite the fact that they use economically priced starting materials but also do not need expensive instrumentation.

Just a simple framework made of polystyrene

This is exactly what Jamil Elias and Laetitia Philippe of Empa's Mechanics of Materials and Nanostructures Laboratory in Thun have succeeded in doing. They used polystyrene spheres as a sort of scaffolding to create three-dimensional nanostructures of semiconducting zinc oxide on various substrates. The two scientists are convinced that the (nanostructured) "rough" but regularly-structured surfaces they have produced this way can be exploited in a range of electronic and optoelectronic devices such as solar cells and also short wave lasers, light emitting diodes and field emission displays.

The scientific world reacted promptly. The paper in which the results were reported was published in January 2010 in the on line edition of Advanced Materials. In the same month it became the most frequently downloaded article, and in April it was selected to appear on the Inside Front Cover of the journal.

The principle behind the process is quite simple. Little spheres of polystyrene a few micrometers in diameter are placed on an electrically conducting surface where they orient themselves in regular patterns. Polystyrene is cheap and ubiquitous - it is widely used as a packaging material (for example for plastic yoghurt pots) or as insulating material in expanded form as a solidified foam.

Hollow bodies with prickles for photovoltaic applications

The tiny balls of polystyrene anchored in this way form the template on which the nanowires are desposited. Jamil Elias has succeeded in using an electrochemical method which himself has developed to vary the conductivity and electrolytic properties of the polystyrene balls in such way that the zinc oxide is deposited on the surface of the microspheres. Over time regular nanowires grow from this surface, and when this process is complete the polystyrene is removed, leaving behind hollow spherical structures with spines - little sea-urchins, as it were! Tightly packed on the underlying substrate, the sea-urchins lend it a three-dimensional structure, thereby increasing considerably its surface area.

This nanostructured surface is predestined for use in photovoltaic applications. The researchers expect that it will have excellent light scattering properties. This means the surface will be able to absorb significantly more sunlight and therefore be able to convert radiated energy into electricity more efficiently. In a project supported by the Swiss Federal Office of Energy (SFOE), Laetitia Philippe and her research team are developing extremely thin absorbers (ETAs) for solar cells, based these zinc oxide nanostructures.

Literature reference: J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, L. Philippe: Hollow Urchin - like ZnO thin Films by Electrochemical Deposition, Advanced Materials, Volume 22, Issue 14, Pages 1607 - 1612 (April 12, 2010) www3.interscience.wiley.com/journal/123240975/abstract DOI: 10.1002/adma.200903098

####

For more information, please click here

Contacts:
Dr. Jamil Elias

41-332-283-627
Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Copyright © EMPA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Possible Futures

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Energy

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Solar/Photovoltaic

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic