Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UQ researchers develop a dissolvable needle-free Nanopatch for vaccine delivery

Professor Mark Kendall
Professor Mark Kendall

Abstract:
AIBN research has found the Nanopatch - a needle-free, pain-free method of vaccine delivery - is now dissolvable, eliminating the possibility of needle-stick injury.

UQ researchers develop a dissolvable needle-free Nanopatch for vaccine delivery

Australia | Posted on July 26th, 2010

Project leader Professor Mark Kendall said the finding confirmed that the Nanopatch was a potential safer, cheaper alternative to needle vaccines.

The study was published recently in scientific journal Small.

"What we have been able to show for the first time is that the Nanopatch is completely dissolvable," Professor Kendall said.

"That means zero needles, zero sharps, zero opportunity for contamination and zero chance of needle-stick injury.

"The World Health Organisation estimates that 30 percent of vaccinations in Africa are unsafe due to cross contamination caused by needle-stick injury. That's a healthcare burden of about $25 per administration."

The Nanopatch is smaller than a postage stamp and is packed with thousands of tiny projections - invisible to the human eye - now dried to include the vaccine itself together with biocompatible excipients.

When the patch is placed against the skin, these projections push through the outer skin layer and deliver the biomolecules to the target cells.

When dry, the device is stable and strong. When the Nanopatch is applied to the skin, the projections immediately become wet, dissolving within minutes.

Research published in journal Plos One in April found that the Nanopatch achieved a protective immune response using an unprecedented one-hundredth of the standard needle and syringe dose.

Professor Kendall said this was 10 times better than any other delivery method.

Being both painless and needle-free, the Nanopatch offers hope for those with needle phobia, as well as improving the vaccination experience for young children.

"When compared to a needle and syringe, a Nanopatch is cheap to produce and it is easy to imagine a situation in which a Government might provide vaccinations for a pandemic such as swine flu to be collected from a chemist or sent in the mail," Professor Kendall said.

He said the work had been in progress for five years and his team hoped to start clinical trials soon.

The study was conducted using influenza vaccine but Professor Kendall said any vaccine could potentially be delivered via the Nanopatch.

Also published in a separate paper in Small is research showing the Nanopatch's success extends to candidate vaccines for West Nile virus and Chukunga virus.

Professor Kendall is based at both UQ's Australian Institute for Bioengineering and Nanotechnology and the Diamantina Institute.

His collaborators for this work include Professor Ian Frazer and researchers from the University of Melbourne.

####

For more information, please click here

Contacts:
Media:
Professor Kendall
0431 162 391)

Penny Robinson
UQ Communications
07 3365 9723


Copyright © Australian Institute for Bioengineering and Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Possible Futures

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project