Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UQ researchers develop a dissolvable needle-free Nanopatch for vaccine delivery

Professor Mark Kendall
Professor Mark Kendall

Abstract:
AIBN research has found the Nanopatch - a needle-free, pain-free method of vaccine delivery - is now dissolvable, eliminating the possibility of needle-stick injury.

UQ researchers develop a dissolvable needle-free Nanopatch for vaccine delivery

Australia | Posted on July 26th, 2010

Project leader Professor Mark Kendall said the finding confirmed that the Nanopatch was a potential safer, cheaper alternative to needle vaccines.

The study was published recently in scientific journal Small.

"What we have been able to show for the first time is that the Nanopatch is completely dissolvable," Professor Kendall said.

"That means zero needles, zero sharps, zero opportunity for contamination and zero chance of needle-stick injury.

"The World Health Organisation estimates that 30 percent of vaccinations in Africa are unsafe due to cross contamination caused by needle-stick injury. That's a healthcare burden of about $25 per administration."

The Nanopatch is smaller than a postage stamp and is packed with thousands of tiny projections - invisible to the human eye - now dried to include the vaccine itself together with biocompatible excipients.

When the patch is placed against the skin, these projections push through the outer skin layer and deliver the biomolecules to the target cells.

When dry, the device is stable and strong. When the Nanopatch is applied to the skin, the projections immediately become wet, dissolving within minutes.

Research published in journal Plos One in April found that the Nanopatch achieved a protective immune response using an unprecedented one-hundredth of the standard needle and syringe dose.

Professor Kendall said this was 10 times better than any other delivery method.

Being both painless and needle-free, the Nanopatch offers hope for those with needle phobia, as well as improving the vaccination experience for young children.

"When compared to a needle and syringe, a Nanopatch is cheap to produce and it is easy to imagine a situation in which a Government might provide vaccinations for a pandemic such as swine flu to be collected from a chemist or sent in the mail," Professor Kendall said.

He said the work had been in progress for five years and his team hoped to start clinical trials soon.

The study was conducted using influenza vaccine but Professor Kendall said any vaccine could potentially be delivered via the Nanopatch.

Also published in a separate paper in Small is research showing the Nanopatch's success extends to candidate vaccines for West Nile virus and Chukunga virus.

Professor Kendall is based at both UQ's Australian Institute for Bioengineering and Nanotechnology and the Diamantina Institute.

His collaborators for this work include Professor Ian Frazer and researchers from the University of Melbourne.

####

For more information, please click here

Contacts:
Media:
Professor Kendall
0431 162 391)

Penny Robinson
UQ Communications
07 3365 9723


Copyright © Australian Institute for Bioengineering and Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Possible Futures

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic