Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Microbial world’s use of metals mostly unmapped

More surprises from an extremophile that thrives in the near-boiling waters of undersea thermal vents: Scientists know Pyrococcus furiosus assimilates metals such as tungsten. But a new way of surveying microbes for metal-containing proteins found several unexpected metals in P. furiosus such as lead and manganese. Similar surprises from other microbes reveal that scientists have underestimated the extent and diversity of metal-driven chemical processes in microbes, which are single-cell microorganisms that include bacteria, fungi, plants, and animals. (Illustration by Berkeley Lab's Steve Yannone and Robert Rambo)
More surprises from an extremophile that thrives in the near-boiling waters of undersea thermal vents: Scientists know Pyrococcus furiosus assimilates metals such as tungsten. But a new way of surveying microbes for metal-containing proteins found several unexpected metals in P. furiosus such as lead and manganese. Similar surprises from other microbes reveal that scientists have underestimated the extent and diversity of metal-driven chemical processes in microbes, which are single-cell microorganisms that include bacteria, fungi, plants, and animals. (Illustration by Berkeley Lab's Steve Yannone and Robert Rambo)

Abstract:
New method could lead to innovative clean energy and bioremediation technologies, and help explain how microbes shape Earth's climate

Microbial world’s use of metals mostly unmapped

Berkeley, CA | Posted on July 20th, 2010

A new way of surveying microbes for the metals they contain reveals that biologists have been relying on the equivalent of a 15th century map of the world.

It turns out that there are many more metal-containing proteins in microbes than previously recognized.

This means the microbial world boasts a broader and more diverse array of metal-driven chemical processes than scientists have imagined. In fact, most have yet to be discovered, according to a first-of-its-kind survey of the metals in three microbes conducted by scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory in collaboration with scientists at the University of Georgia.

Their research will help chart a more complete understanding of the far-reaching roles of microbial metals in biology and the Earth's climate. It could also lead to new ways to harness metal-driven chemical processes to create next-generation biofuels or to clean up environmental contaminants.

Microbes assimilate metals from their environment and incorporate them into proteins in order to power life's most important chemical processes, such as photosynthesis, respiration, and DNA repair. Metal-containing proteins in microbes also helped oxygenate the planet's atmosphere billions of years ago, enabling life as we know it, and they continue to play a critical role in the Earth's carbon cycle.

But the diversity and extent of microbial metals had eluded scientists until now.

"This is a huge surprise. It reveals how naive we are about the wide range of chemistries that microbes do," says John Tainer of Berkeley Lab's Life Sciences Division and the Scripps Research Institute in La Jolla, CA. Tainer conducted the research with Michael Adams of the University of Georgia and a team of scientists that includes Steven Yannone and Gary Siuzdak of Berkeley Lab's Life Sciences Division.

The scientists report their research July 18 in an advance online publication of the journal Nature.


Using state-of-the-art techniques, the team catalogued the metals in three microbes: one that lives in human intestines, one plucked from a hotspring in Yellowstone National Park, and one that thrives in the near-boiling waters of undersea thermal vents.

They uncovered a microbial world far richer in metals than ever expected. For example, in the undersea thermal-vent loving microbe, or Pyrococcus furiosus, they found metals such as lead, manganese, and molybdenum that P. furiosus wasn't known to use.

The scientists traced these newfound metals to the proteins that contain them, called metalloproteins. They discovered four new metalloproteins in the microbe, which increased the number of known metalloproteins in P. furiosus by almost a quarter. Their discovery also increased the number of nickel-containing enzymes in all of biology from eight to ten.

A similar survey of the other two microbes unearthed additional unexpected metals and new metalloproteins. Based on this sizeable haul from only three microbes, the team believes that metalloproteins are much more extensive and diverse in the microbial world than scientists realized.

"We thought we knew most of the metalloproteins out there," says Tainer. "But it turns out we only know a tiny fraction of them. We now have to look at microbial genomes with a fresh eye."

The team used a first-of-its-kind combination of two techniques to envisage this uncharted microbial landscape. Biochemical fractionation enabled them to take apart a microbe while keeping its proteins intact and stable, ready to be analyzed in their natural state. Next, a technology called inductively coupled plasma mass spectrometry allowed them to identify extremely low quantities of individual metals in these proteins.

Together, these tools provide a quick tally of the metalloproteins in a microbe.

The current way to discover metalloproteins is much slower. Simply stated, it involves genetically sequencing a microbe, identifying the proteins encoded by its genes, and structurally characterizing each protein.

"Standard methods of identifying metalloproteins can take years," says Yannone. "By directly surveying all microbial proteins for metals we can rapidly identify the majority of metalloproteins within any cell."

In addition to gaining a better understanding of the biochemical diversity of microbes, the team's new metal-hunting technique could expedite the search for new biochemical capabilities in microbial life that can be harnessed for clean energy development, carbon sequestration, and other applications.

"If you want to degrade cellulose to make biofuel, and you know the enzymes involved require a specific metal-driven chemistry, then you can use this technique to find those enzymes in microbes," says Yannone.

Adds Tainer, "Knowing that all of these metal-containing proteins are out there, waiting to be found, is kind of like being in a candy store. We might discover new proteins that we can put to use."

The research was funded by the Department of Energy Office of Science.

Berkeley Lab scientists provided the inductively coupled plasma mass spectrometry equipment. They contributed to the experimental design and data analysis in collaboration with University of Georgia scientists.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory provides solutions to the world’s most urgent scientific challenges including clean energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives and knowledge of the world around us through innovative science, advanced computing, and technology that makes a difference. Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science.

For more information, please click here

Contacts:
Dan Krotz
(510) 486-4019

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Chemistry

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Possible Futures

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Discoveries

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Environment

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

A human enzyme can biodegrade graphene August 28th, 2018

Large scale preparation method of high quality SWNT sponges August 24th, 2018

Energy

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project