Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Microbial world’s use of metals mostly unmapped

More surprises from an extremophile that thrives in the near-boiling waters of undersea thermal vents: Scientists know Pyrococcus furiosus assimilates metals such as tungsten. But a new way of surveying microbes for metal-containing proteins found several unexpected metals in P. furiosus such as lead and manganese. Similar surprises from other microbes reveal that scientists have underestimated the extent and diversity of metal-driven chemical processes in microbes, which are single-cell microorganisms that include bacteria, fungi, plants, and animals. (Illustration by Berkeley Lab's Steve Yannone and Robert Rambo)
More surprises from an extremophile that thrives in the near-boiling waters of undersea thermal vents: Scientists know Pyrococcus furiosus assimilates metals such as tungsten. But a new way of surveying microbes for metal-containing proteins found several unexpected metals in P. furiosus such as lead and manganese. Similar surprises from other microbes reveal that scientists have underestimated the extent and diversity of metal-driven chemical processes in microbes, which are single-cell microorganisms that include bacteria, fungi, plants, and animals. (Illustration by Berkeley Lab's Steve Yannone and Robert Rambo)

Abstract:
New method could lead to innovative clean energy and bioremediation technologies, and help explain how microbes shape Earth's climate

Microbial world’s use of metals mostly unmapped

Berkeley, CA | Posted on July 20th, 2010

A new way of surveying microbes for the metals they contain reveals that biologists have been relying on the equivalent of a 15th century map of the world.

It turns out that there are many more metal-containing proteins in microbes than previously recognized.

This means the microbial world boasts a broader and more diverse array of metal-driven chemical processes than scientists have imagined. In fact, most have yet to be discovered, according to a first-of-its-kind survey of the metals in three microbes conducted by scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory in collaboration with scientists at the University of Georgia.

Their research will help chart a more complete understanding of the far-reaching roles of microbial metals in biology and the Earth's climate. It could also lead to new ways to harness metal-driven chemical processes to create next-generation biofuels or to clean up environmental contaminants.

Microbes assimilate metals from their environment and incorporate them into proteins in order to power life's most important chemical processes, such as photosynthesis, respiration, and DNA repair. Metal-containing proteins in microbes also helped oxygenate the planet's atmosphere billions of years ago, enabling life as we know it, and they continue to play a critical role in the Earth's carbon cycle.

But the diversity and extent of microbial metals had eluded scientists until now.

"This is a huge surprise. It reveals how naive we are about the wide range of chemistries that microbes do," says John Tainer of Berkeley Lab's Life Sciences Division and the Scripps Research Institute in La Jolla, CA. Tainer conducted the research with Michael Adams of the University of Georgia and a team of scientists that includes Steven Yannone and Gary Siuzdak of Berkeley Lab's Life Sciences Division.

The scientists report their research July 18 in an advance online publication of the journal Nature.


Using state-of-the-art techniques, the team catalogued the metals in three microbes: one that lives in human intestines, one plucked from a hotspring in Yellowstone National Park, and one that thrives in the near-boiling waters of undersea thermal vents.

They uncovered a microbial world far richer in metals than ever expected. For example, in the undersea thermal-vent loving microbe, or Pyrococcus furiosus, they found metals such as lead, manganese, and molybdenum that P. furiosus wasn't known to use.

The scientists traced these newfound metals to the proteins that contain them, called metalloproteins. They discovered four new metalloproteins in the microbe, which increased the number of known metalloproteins in P. furiosus by almost a quarter. Their discovery also increased the number of nickel-containing enzymes in all of biology from eight to ten.

A similar survey of the other two microbes unearthed additional unexpected metals and new metalloproteins. Based on this sizeable haul from only three microbes, the team believes that metalloproteins are much more extensive and diverse in the microbial world than scientists realized.

"We thought we knew most of the metalloproteins out there," says Tainer. "But it turns out we only know a tiny fraction of them. We now have to look at microbial genomes with a fresh eye."

The team used a first-of-its-kind combination of two techniques to envisage this uncharted microbial landscape. Biochemical fractionation enabled them to take apart a microbe while keeping its proteins intact and stable, ready to be analyzed in their natural state. Next, a technology called inductively coupled plasma mass spectrometry allowed them to identify extremely low quantities of individual metals in these proteins.

Together, these tools provide a quick tally of the metalloproteins in a microbe.

The current way to discover metalloproteins is much slower. Simply stated, it involves genetically sequencing a microbe, identifying the proteins encoded by its genes, and structurally characterizing each protein.

"Standard methods of identifying metalloproteins can take years," says Yannone. "By directly surveying all microbial proteins for metals we can rapidly identify the majority of metalloproteins within any cell."

In addition to gaining a better understanding of the biochemical diversity of microbes, the team's new metal-hunting technique could expedite the search for new biochemical capabilities in microbial life that can be harnessed for clean energy development, carbon sequestration, and other applications.

"If you want to degrade cellulose to make biofuel, and you know the enzymes involved require a specific metal-driven chemistry, then you can use this technique to find those enzymes in microbes," says Yannone.

Adds Tainer, "Knowing that all of these metal-containing proteins are out there, waiting to be found, is kind of like being in a candy store. We might discover new proteins that we can put to use."

The research was funded by the Department of Energy Office of Science.

Berkeley Lab scientists provided the inductively coupled plasma mass spectrometry equipment. They contributed to the experimental design and data analysis in collaboration with University of Georgia scientists.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory provides solutions to the world’s most urgent scientific challenges including clean energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives and knowledge of the world around us through innovative science, advanced computing, and technology that makes a difference. Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science.

For more information, please click here

Contacts:
Dan Krotz
(510) 486-4019

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Chemistry

New reaction for the synthesis of nanostructures July 21st, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Possible Futures

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Academic/Education

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

FEI and King Abdullah University of Science and Technology Establish New Electron Microscopy ‘Centre of Excellence’: Centre of Excellence involves materials and life sciences research and technical collaboration July 5th, 2016

Discoveries

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Environment

A 'smart dress' for oil-degrading bacteria July 24th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

Energy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic