Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Explained: Phonons

A computer simulation shows phonons, depicted as color variations, traveling through a crystal lattice. The lattice in this case is broken up by round rods whose spacing has been chosen to block the passage of phonons of certain wavelengths.
A computer simulation shows phonons, depicted as color variations, traveling through a crystal lattice. The lattice in this case is broken up by round rods whose spacing has been chosen to block the passage of phonons of certain wavelengths.

Abstract:
When trying to control the way heat moves through solids, it is often useful to think of it as a flow of particles.

By David L. Chandler, MIT News Office

Explained: Phonons

Cambridge, MA | Posted on July 10th, 2010

For the engineers who design cell phones, solar panels and computer chips, it's increasingly important to be able to control the way heat moves through the crystalline materials — such as silicon — that these devices are based on. In computer and cell-phone chips, for example, one of the key limitations to increasing speed and memory is the need to dissipate the heat generated by the chips.

To understand how heat spreads through a material, consider that heat — as well as sound — is actually the motion or vibration of atoms and molecules: Low-frequency vibrations correspond to sound, while higher frequencies correspond to heat. At each frequency, quantum mechanics principles dictate that the vibrational energy must be a multiple of a basic amount of energy, called a quantum, that is proportional to the frequency. Physicists call these basic levels of energy phonons.

In a sense, then, "phonon" is just a fancy word for a particle of heat.

Phonons are especially relevant in the behavior of heat and sound in crystals, explains Gang Chen, the Rohsenow Professor of Mechanical Engineering at MIT. In a crystal, the atoms are neatly arranged in a uniform, repeating structure; when heated, the atoms can oscillate at specific frequencies. The bonds between the individual atoms in a crystal behave essentially like springs, Chen says. When one of the atoms gets pushed or pulled, it sets off a wave (or phonon) travelling through the crystal, just as sitting down on one edge of a trampoline can set off vibrations through the entire surface.

In practice, most materials are filled with a chaotic mix of phonons that have different frequencies and are traveling in different directions, all superimposed on each other, in the same way that the seemingly chaotic movements of a choppy sea can (theoretically) be untangled to reveal a variety of superimposed waveforms of different frequencies and directions.

But unlike photons (the particles that carry light or other electromagnetic radiation), which generally don't interact at all if they have different wavelengths, phonons of different wavelengths can interact and mix when they bump into each other, producing a different wavelength. This makes their behavior much more chaotic and thus difficult to predict and control.

Just as photons of a given frequency can only exist at certain specific energy levels — exact multiples of the basic quanta —so, too, can phonons, Chen says. And when working on applied physics relating to the transfer of heat within solids, which is a specific focus of Chen's research, thinking in terms of phonons has proved to be especially useful.

For example, in the quest for better ways to dissipate heat from computer chips — a key requirement as chips get faster and pack in more components — finding ways to manipulate the behavior of the phonons in those chips, so the heat can be removed easily, is the key. Conversely, in designing thermoelectric devices to generate electricity from temperature differences, it's important to develop materials that can conduct electricity (the motion of electrons) easily, but block the motion of phonons (that is, heat).

"In some cases, you want strong conduction of phonons, and in some cases you want to reduce their propagation," Chen says. "Sometimes they're good guys, and sometimes they're bad guys."

####

For more information, please click here

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Unusual Electronic State Found in New Class of Unconventional Superconductors: Finding gives scientists a new group of materials to explore to unlock secrets of some materials' ability to carry current with no energy loss December 8th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Quantum nanoscience

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE