Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Colorful Warning

Abstract:
Selective, sensitive CO detection with a rhodium complex

Colorful Warning

Weinheim, Germany | Posted on July 6th, 2010

Carbon monoxide is an insidious poison: it is colorless, odorless, and toxic at low concentrations. It is usually produced by combustion engines or incomplete combustion in gas furnaces or wood-burning fireplaces. Spanish researchers working with Ramón Martínez-Máñez have now developed a sensitive and selective detector that reliably detects CO in air. As the scientists from the IDM Research Institute at the Polytechnic University of Valencia report in the journal Angewandte Chemie, their system involves a special rhodium complex that distinctly changes color in the presence of CO.

In the USA alone, there are 15,000 accidents with CO reported annually; 500 of these are fatal. The implementation of reliable warning devices in dangerous locations is thus correspondingly important. Most modern CO sensors are electronic; as an alternative, researchers are looking for detectors that indicate the presence of CO by a color change. However, such colorimetric detection methods remain rare, don't function in air, or are not sensitive enough.

Based on a special complex of rhodium, the Spanish researchers have now developed a CO detector that not only reliably detects CO in solution, but also in air. The detection limit is low enough that it responds before toxic levels are reached.

At the core of the complex are two rhodium atoms connected to each other by acetate groups and two special phosphorus-containing ligands (cyclometallated phosphines). The metals are also bound axially by two acetic acid ligands. The complex molecule is deposited onto silica gel, where it is adsorbed; this forms a gray-violet solid. If the complex comes into contact with air containing CO, one or two molecules of CO bind to the rhodium by forcing the acetic acid molecules out of their axial binding sites on the two rhodium atoms. Within a few minutes, this causes a distinct color change in the solid, which becomes orange-yellow. Treatment with a stream of clean air completely regenerates the detector.

The detection system is highly selective for CO. It does not respond to CO2, volatile organic compounds, or SO2. It only reacts to NO2 when it is present in extremely high concentrations. The researchers hope that this system will form the basis for efficient, low-maintenance chemosensors for the easy and inexpensive detection of CO. "For instance colorimetric detection systems of CO can be implemented in clothes, paintings etc.," says Martínez-Máñez, "and the presence of CO will then simply be detected via a color change visible to the naked eye". In contrast, electronic equipment needs a source of electricity and is difficult to incorporate into the fabric of clothes.

Author: Ramón Martínez-Máñez, Universidad de Valencia (Spain),

Title: Sensitive and Selective Chromogenic Sensing of Carbon Monoxide using Binuclear Rhodium Complexes

Angewandte Chemie International Edition 2010, 49, No. 29, 4934-4937, Permalink to the article: http://dx.doi.org/10.1002/anie.201001344

####

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Roll up your screen and stow it away? Tel Aviv University researchers develop molecular backbone of super-slim, bendable digital displays March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Sensors

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

LamdaGen Corporation Launches Taiwan Diagnostic Subsidiary March 19th, 2015

Announcements

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Home

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Materials - Next-generation insulation ... January 13th, 2015

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE