Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Colorful Warning

Abstract:
Selective, sensitive CO detection with a rhodium complex

Colorful Warning

Weinheim, Germany | Posted on July 6th, 2010

Carbon monoxide is an insidious poison: it is colorless, odorless, and toxic at low concentrations. It is usually produced by combustion engines or incomplete combustion in gas furnaces or wood-burning fireplaces. Spanish researchers working with Ramón Martínez-Máñez have now developed a sensitive and selective detector that reliably detects CO in air. As the scientists from the IDM Research Institute at the Polytechnic University of Valencia report in the journal Angewandte Chemie, their system involves a special rhodium complex that distinctly changes color in the presence of CO.

In the USA alone, there are 15,000 accidents with CO reported annually; 500 of these are fatal. The implementation of reliable warning devices in dangerous locations is thus correspondingly important. Most modern CO sensors are electronic; as an alternative, researchers are looking for detectors that indicate the presence of CO by a color change. However, such colorimetric detection methods remain rare, don't function in air, or are not sensitive enough.

Based on a special complex of rhodium, the Spanish researchers have now developed a CO detector that not only reliably detects CO in solution, but also in air. The detection limit is low enough that it responds before toxic levels are reached.

At the core of the complex are two rhodium atoms connected to each other by acetate groups and two special phosphorus-containing ligands (cyclometallated phosphines). The metals are also bound axially by two acetic acid ligands. The complex molecule is deposited onto silica gel, where it is adsorbed; this forms a gray-violet solid. If the complex comes into contact with air containing CO, one or two molecules of CO bind to the rhodium by forcing the acetic acid molecules out of their axial binding sites on the two rhodium atoms. Within a few minutes, this causes a distinct color change in the solid, which becomes orange-yellow. Treatment with a stream of clean air completely regenerates the detector.

The detection system is highly selective for CO. It does not respond to CO2, volatile organic compounds, or SO2. It only reacts to NO2 when it is present in extremely high concentrations. The researchers hope that this system will form the basis for efficient, low-maintenance chemosensors for the easy and inexpensive detection of CO. "For instance colorimetric detection systems of CO can be implemented in clothes, paintings etc.," says Martínez-Máñez, "and the presence of CO will then simply be detected via a color change visible to the naked eye". In contrast, electronic equipment needs a source of electricity and is difficult to incorporate into the fabric of clothes.

Author: Ramón Martínez-Máñez, Universidad de Valencia (Spain),

Title: Sensitive and Selective Chromogenic Sensing of Carbon Monoxide using Binuclear Rhodium Complexes

Angewandte Chemie International Edition 2010, 49, No. 29, 4934-4937, Permalink to the article: http://dx.doi.org/10.1002/anie.201001344

####

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Possible Futures

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Sensors

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Home

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Transparent wood could one day help brighten homes and buildings March 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic