Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Life of plastic solar cells jumps from hours to eight months

David Rider shows off an unsealed plastic solar cell
David Rider shows off an unsealed plastic solar cell

Abstract:
A team of researchers from the University of Alberta and the National Institute for Nanotechnology has extended the operating life of an unsealed plastic solar cell from mere hours to eight months.

By Brian Murphy

Life of plastic solar cells jumps from hours to eight months

Edmonton | Posted on June 30th, 2010

U of A chemistry researcher David Rider says plastic solar-cell technology is a very competitive field and the accomplishment by the U of A-NINT team is quite an achievement.

"Inexpensive, lightweight plastic solar-cell products, like a blanket or sheet that can be rolled up, will change the solar energy industry," said Rider.

The research team initially hit a wall trying to increase the operating life of their plastic solar-cell design. Rider says one of the problems involved electrodes, a key piece of the circuitry required for the efficient extraction of electricity from the solar cell.

"A typical electrode priming coating is known to be unstable and can migrate through the circuitry, potentially limiting the performance of our cell to about 10 hours," said Rider.

So the researchers came up with a new polymer coating that outlasted their original by more than 5,000 per cent: When Rider and team submitted their findings to a science journal, the new plastic solar cell had clocked 500 hours of high-capacity performance.

And Rider says that the solar cell might still be working at high capacity today, had it not been for damage caused during return shipping from additional testing in Ottawa. "Seven months after we handed in the research on the 500-hour breakthrough, the solar cell was still working," said Rider.

The research of Rider and his colleagues Jillian Buriak and Michael J. Brett was published this week in Advanced Functional Materials.

Rider says that, despite his team's success and advances made by research groups around the world, there's a lot of work to be done before plastic solar-cell kits are available at home-improvement stores across Canada.

"We have to increase their efficiency while maintaining a long-performance life," said Rider. "Getting eight months of high-capacity performance out of our design is moving in the right direction."

####

For more information, please click here

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Possible Futures

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Academic/Education

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Announcements

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Energy

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Clusters of Nanoparticles protect against high temperature creep and radiations August 16th, 2016

Research partnerships

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic