Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > For platinum catalysts, smaller may be better

In these STM images of a platinum catalyst, (A) shows the terraced the surface under ultrahigh vacuum, (B) as the surface is covered with carbon monoxide and pressure increases, the terraces widen (C) when coverage is complete and press reaches one torr, the terraces fracture into nanoclusters (D) enlarged view shows triangular shape of the nanoclusters, two of which are marked by red lines.
In these STM images of a platinum catalyst, (A) shows the terraced the surface under ultrahigh vacuum, (B) as the surface is covered with carbon monoxide and pressure increases, the terraces widen (C) when coverage is complete and press reaches one torr, the terraces fracture into nanoclusters (D) enlarged view shows triangular shape of the nanoclusters, two of which are marked by red lines.

Abstract:
When it comes to metal catalysts, the platinum standard is, well, platinum! However, at about $2,000 an ounce, platinum is more expensive than gold. The high cost of the raw material presents major challenges for the future wide scale use of platinum in fuel cells. Research at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) suggests that one possible way to meet these challenges is to think small - really small.

For platinum catalysts, smaller may be better

Berkeley, CA | Posted on June 30th, 2010

A study led by Gabor Somorjai and Miquel Salmeron of Berkeley Lab's Materials Sciences Division showed that under high pressure, comparable to the pressures at which many industrial technologies operate, nanoparticle clusters of platinum potentially can out-perform the single crystals of platinum now used in fuel cells and catalytic converters.

"We've discovered that the presence of carbon monoxide molecules can reversibly alter the catalytic surfaces of platinum single crystals, supposedly the most thermodynamically stable configuration for a platinum catalyst," said Somorjai, one of the world's foremost experts on surface chemistry and catalysis. "This indicates that under high-pressure conditions, single crystals of platinum are not as stable as nanoclusters, which actually become more stabilized as carbon monoxide molecules are co-adsorbed together with platinum atoms."

"Our results also demonstrate that the limitations of traditional surface science techniques can be overcome with the use of techniques that operate under realistic conditions, says Salmeron, a leading authority on surface imaging and developer of the in situ imaging and spectroscopic techniques used in this study. He is also the director of Berkeley Lab's Materials Sciences Division.

In this study, single crystal platinum surfaces were examined under high-pressure. The surfaces were structured as a series of flat terraces about six atoms wide separated by atomic steps. Such structural feature are common in metal catalysts and are considered to be the active sites where catalytic reactions occur. Single crystals are used as models for these features.

Somorjai and Salmeron coated the platinum surfaces in this study with carbon monoxide gas, a reactant involved in many important industrial catalytic processes, including the Fischer-Tropsch process for making liquid hydrocarbons, the oxidation process in automobile catalytic converters, and the degradation of platinum electrodes in hydrogen fuel cells. As carbon monoxide coverage of the platinum crystal surfaces approached 100-percent, the terraces began to widen - the result of increasing lateral repulsion between the molecules. When the surface pressure reached one torr, the terraces fractured into nanometer-sized clusters. The terraces were re-formed upon removal of the carbon monoxide gas.

"Our observations of the large-scale surface restructuring of stepped platinum highlights the strong connection between coverage of reactant molecules and the atomic structure of the catalyst surface," says Somorjai. "The ability to observe catalytic surfaces at the atomic and molecular levels under actual reaction conditions is the only way such a phenomenon could be detected."

Catalysts - substances that speed up the rates of chemical reactions without themselves being chemically changed - are used to initiate virtually every industrial manufacturing process that involves chemistry. Metal catalysts are the workhorses with platinum being one of the best. Industrial catalysts typically operate under pressures ranging from millitorr to atmospheres, and at temperatures ranging from room to hundreds of degrees Celsius. However, surface science experiments have traditionally been performed under high vacuum conditions and low temperatures.

"Such conditions will likely inhibit any surface restructuring process that requires the overcoming of even moderate activation barriers," Somorjai says.

Says Salmeron, "The unanswered question today is what are the geometry and location of the catalyst atoms when the surfaces are covered with dense layers of molecules, as occurs during a chemical reaction."

Somorjai and Salmeron have for many years been collaborating on the development of instrumentation and techniques that enable them to do catalysis studies under realistic conditions. They now have at their disposal unique high-pressure scanning tunneling microscopes (STM) and an ambient pressure x-ray photoelectron spectroscopy (AP-XPS) beamline operating at the Berkeley Lab's Advanced Light Source, a premier source of synchrotron radiation for scientific research.

"With these two resources, we can image the atomic structure and identify the chemical state of catalyst atoms and adsorbed reactant molecules under industrial-type pressures and temperatures," Salmeron says.

STM images revealed the formation of nanoclusters on the platinum crystal surfaces, and the AP-XPS spectra revealed a change in carbon monoxide electron binding energies. A subsequent collaboration with Lin-Wang Wang, a theorist in Berkeley Lab's Computational Sciences Division, explained the change in structure as the result of the relaxation of the strong repulsion between carbon monoxide molecules that arises from their very high density on the surface when in equilibrium with elevated pressures of the gas.

"In the future, the use of these stable platinum nanoclusters as fuel cell catalysts may help to boost performance and reduce costs," Somorjai says.The next step for Somorjai and Salmeron and their research team will be to determine whether other adsorbed reactants, such as oxygen or hydrogen, also result in the creation of nanoclusters in platinum. They also want to know if nanoclusters can be induced in other metal catalysts as well, such as palladium, silver, copper, rhodium, iron and cobalt.

"If this nanoclustering is a general phenomenon, it will have major consequences for the type of structures that catalysts must have under high-pressure, high-temperature catalytic reaction conditions," Somorjai says.

A paper on this research appears in the journal Science, titled "Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage." Co-authoring this paper with Somorjai and Salmeron were Feng Tao, Sefa Dag, Lin-Wang Wang, Zhi Liu, Derek Butcher and Hendrik Bluhm.

This research was supported by the Basic Energy Sciences programs of the DOE Office of Science.

Additional Information

For more information about the research of Gabor Somorjai, visit the Website at

www.cchem.berkeley.edu/gasgrp/

For more information about the research of Miquel Salmeron visit the Website at

stm.lbl.gov/Salmeron_group/home.html

####

About Lawrence Berkeley National Laboratory
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Chemistry

The gold standard December 9th, 2014

Simple, Biocompatible Method Developed for Production of Cerium Oxide Nanoparticles December 9th, 2014

Nanocatalysts Can Reduce Pollution Caused by Diesel Engines December 4th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Materials/Metamaterials

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

A golden thread through the labyrinth of nanomaterials December 12th, 2014

Pixelligent Closes $5.5 Million in Funding: Capital Will Be Used to Support Global Customer Growth December 12th, 2014

Announcements

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Energy

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

Fuel Cells

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE