Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > For platinum catalysts, smaller may be better

In these STM images of a platinum catalyst, (A) shows the terraced the surface under ultrahigh vacuum, (B) as the surface is covered with carbon monoxide and pressure increases, the terraces widen (C) when coverage is complete and press reaches one torr, the terraces fracture into nanoclusters (D) enlarged view shows triangular shape of the nanoclusters, two of which are marked by red lines.
In these STM images of a platinum catalyst, (A) shows the terraced the surface under ultrahigh vacuum, (B) as the surface is covered with carbon monoxide and pressure increases, the terraces widen (C) when coverage is complete and press reaches one torr, the terraces fracture into nanoclusters (D) enlarged view shows triangular shape of the nanoclusters, two of which are marked by red lines.

Abstract:
When it comes to metal catalysts, the platinum standard is, well, platinum! However, at about $2,000 an ounce, platinum is more expensive than gold. The high cost of the raw material presents major challenges for the future wide scale use of platinum in fuel cells. Research at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) suggests that one possible way to meet these challenges is to think small - really small.

For platinum catalysts, smaller may be better

Berkeley, CA | Posted on June 30th, 2010

A study led by Gabor Somorjai and Miquel Salmeron of Berkeley Lab's Materials Sciences Division showed that under high pressure, comparable to the pressures at which many industrial technologies operate, nanoparticle clusters of platinum potentially can out-perform the single crystals of platinum now used in fuel cells and catalytic converters.

"We've discovered that the presence of carbon monoxide molecules can reversibly alter the catalytic surfaces of platinum single crystals, supposedly the most thermodynamically stable configuration for a platinum catalyst," said Somorjai, one of the world's foremost experts on surface chemistry and catalysis. "This indicates that under high-pressure conditions, single crystals of platinum are not as stable as nanoclusters, which actually become more stabilized as carbon monoxide molecules are co-adsorbed together with platinum atoms."

"Our results also demonstrate that the limitations of traditional surface science techniques can be overcome with the use of techniques that operate under realistic conditions, says Salmeron, a leading authority on surface imaging and developer of the in situ imaging and spectroscopic techniques used in this study. He is also the director of Berkeley Lab's Materials Sciences Division.

In this study, single crystal platinum surfaces were examined under high-pressure. The surfaces were structured as a series of flat terraces about six atoms wide separated by atomic steps. Such structural feature are common in metal catalysts and are considered to be the active sites where catalytic reactions occur. Single crystals are used as models for these features.

Somorjai and Salmeron coated the platinum surfaces in this study with carbon monoxide gas, a reactant involved in many important industrial catalytic processes, including the Fischer-Tropsch process for making liquid hydrocarbons, the oxidation process in automobile catalytic converters, and the degradation of platinum electrodes in hydrogen fuel cells. As carbon monoxide coverage of the platinum crystal surfaces approached 100-percent, the terraces began to widen - the result of increasing lateral repulsion between the molecules. When the surface pressure reached one torr, the terraces fractured into nanometer-sized clusters. The terraces were re-formed upon removal of the carbon monoxide gas.

"Our observations of the large-scale surface restructuring of stepped platinum highlights the strong connection between coverage of reactant molecules and the atomic structure of the catalyst surface," says Somorjai. "The ability to observe catalytic surfaces at the atomic and molecular levels under actual reaction conditions is the only way such a phenomenon could be detected."

Catalysts - substances that speed up the rates of chemical reactions without themselves being chemically changed - are used to initiate virtually every industrial manufacturing process that involves chemistry. Metal catalysts are the workhorses with platinum being one of the best. Industrial catalysts typically operate under pressures ranging from millitorr to atmospheres, and at temperatures ranging from room to hundreds of degrees Celsius. However, surface science experiments have traditionally been performed under high vacuum conditions and low temperatures.

"Such conditions will likely inhibit any surface restructuring process that requires the overcoming of even moderate activation barriers," Somorjai says.

Says Salmeron, "The unanswered question today is what are the geometry and location of the catalyst atoms when the surfaces are covered with dense layers of molecules, as occurs during a chemical reaction."

Somorjai and Salmeron have for many years been collaborating on the development of instrumentation and techniques that enable them to do catalysis studies under realistic conditions. They now have at their disposal unique high-pressure scanning tunneling microscopes (STM) and an ambient pressure x-ray photoelectron spectroscopy (AP-XPS) beamline operating at the Berkeley Lab's Advanced Light Source, a premier source of synchrotron radiation for scientific research.

"With these two resources, we can image the atomic structure and identify the chemical state of catalyst atoms and adsorbed reactant molecules under industrial-type pressures and temperatures," Salmeron says.

STM images revealed the formation of nanoclusters on the platinum crystal surfaces, and the AP-XPS spectra revealed a change in carbon monoxide electron binding energies. A subsequent collaboration with Lin-Wang Wang, a theorist in Berkeley Lab's Computational Sciences Division, explained the change in structure as the result of the relaxation of the strong repulsion between carbon monoxide molecules that arises from their very high density on the surface when in equilibrium with elevated pressures of the gas.

"In the future, the use of these stable platinum nanoclusters as fuel cell catalysts may help to boost performance and reduce costs," Somorjai says.The next step for Somorjai and Salmeron and their research team will be to determine whether other adsorbed reactants, such as oxygen or hydrogen, also result in the creation of nanoclusters in platinum. They also want to know if nanoclusters can be induced in other metal catalysts as well, such as palladium, silver, copper, rhodium, iron and cobalt.

"If this nanoclustering is a general phenomenon, it will have major consequences for the type of structures that catalysts must have under high-pressure, high-temperature catalytic reaction conditions," Somorjai says.

A paper on this research appears in the journal Science, titled "Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage." Co-authoring this paper with Somorjai and Salmeron were Feng Tao, Sefa Dag, Lin-Wang Wang, Zhi Liu, Derek Butcher and Hendrik Bluhm.

This research was supported by the Basic Energy Sciences programs of the DOE Office of Science.

Additional Information

For more information about the research of Gabor Somorjai, visit the Website at

www.cchem.berkeley.edu/gasgrp/

For more information about the research of Miquel Salmeron visit the Website at

stm.lbl.gov/Salmeron_group/home.html

####

About Lawrence Berkeley National Laboratory
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Iranians Find Novel Method for Processing Highly Pure Ceramic Nanoparticles August 12th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Materials/Metamaterials

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Energy

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE