Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Asymetric Nanostructures Developed for Early Prediction of Cancer

Abstract:
Nano-scientists demonstrated biosensors based on novel nanostructure geometries that increase the sensitivity and allow to detect extremely low concentrations of specific disease (for instance cancer) markers.

Asymetric Nanostructures Developed for Early Prediction of Cancer

Tehran, Iran | Posted on June 26th, 2010

The research conducted at the nanotechnology research centre imec (Leuven, Belgium) paves the way to early diagnostics of for example cancer by detecting low densities of cancer markers in human blood samples.

Functionalized nanoparticles can identify and measure extremely low concentrations of specific molecules. They enable the realization of diagnostic systems with increased sensitivity, specificity and reliability resulting in a better and more cost-efficient healthcare. And, going one step further, functionalized nanoparticles can help treat diseases, by destroying the diseased cells that the nanoparticles bind to.

Imec aims at developing biosensor systems exploiting a phenomenon known as localized surface plasmon resonance in noble metal (e.g. gold and silver) nanostructures. The biosensors are based on optical detection of a change in spectral response of the nanostructures upon binding a disease marker. The detection sensitivity can be increased by changing the morphology and size of the noble metal nanostructures. The biosensor system is cheap and easily extendable to multiparameter biosensing.

Imec now presents broken symmetry gold nanostructures that combine nanorings with nanodiscs. Combining different nanostructures in close proximity allows detailed engineering of the plasmon resonance of the nanostructures. More specifically, imec targeted an optimization of both the width of the resonance peak and the resonance shift upon binding of the disease marker. With respect to these parameters, the new geometries clearly outperform the traditional nanospheres. Therefore, they are better suited for practical use in sensitive biosensor systems.

"With our bio-nano research, we aim at playing an important role in developing powerful healthcare diagnostics and therapy. We work on innovative instruments to support the research into diseases and we look into portable technologies that can diagnose diseases at an early stage. We want to help the pharmaceutical and diagnostic industry with instruments to develop diagnostic tests and therapies more efficiently;" said Prof. Liesbet Lagae, program manager HUMAN++ on biomolecular interfacing technology.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Nanomedicine

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical ďdeep learningĒ: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Sensors

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Discoveries

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Announcements

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project