Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SiOnyx Demonstrates Record-Breaking Photosensitivity With New Light Detectors

Abstract:
SiOnyx Inc., in collaboration with the Army Research Office (ARO), has successfully demonstrated pixel-scale detectors with room temperature Detectivity (D*) exceeding 1x10(14) Jones. This represents a full 10x improvement over traditional silicon detectors, setting a record for performance that paves the way for SiOnyx to lead in new sponsored research programs with the Army Night Vision and Electronic Sensors Directorate (NVESD) and Defense Advanced Research Projects Agency (DARPA).

SiOnyx Demonstrates Record-Breaking Photosensitivity With New Light Detectors

Beverly, MA | Posted on June 25th, 2010

Dr. A. Fenner Milton, the US Army NVESD's Director noted, "NVESD is interested in approaches to low light level imaging that have the potential for leveraging silicon technology to reduce costs."

SiOnyx is commercializing a fundamentally new semiconductor processing technique that represents a breakthrough in the development of smaller, cheaper, high-performing silicon photonic devices. Based on a novel laser implant method first discovered at Harvard and commonly referred to as 'Black Silicon,' SiOnyx's patented semiconductor process dramatically enhances the performance of light-sensing devices across a range of applications in the consumer, industrial, medical and defense industries. Under the ARO grant, SiOnyx has shown the applicability of its technology to CMOS image sensors and other mass-produced photonic devices used in demanding imaging and photo-detecting applications.

"Signal-to-noise ratio and dynamic range dictate the ultimate performance in any photonic system," said Stephen Saylor, CEO of SiOnyx. "In applications ranging from medical imaging to digital photography, these basic device characteristics underlie the quality of experience. The record-setting results shown in our work with the ARO are astounding and demonstrate once again how SiOnyx's technology platform has the potential to dramatically alter performance in these multi-billion dollar industries."

With the completion of this milestone and resulting performance breakthroughs, SiOnyx is now leading newly sponsored programs with the US Army's NVESD and DARPA that will advance the use of Black Silicon in low light and infrared imaging.

Dr. Nibir Dhar, Program Manager in DARPA's Microsystems Technology Office, added, "High-performance, low-cost, small infrared cameras at room temperature will have significant impact on many aspects of modern war fighting. Black Silicon offers an enabling pathway in low-cost CMOS camera development for near-infrared applications."

####

About SiOnyx Inc.
SiOnyx is a semiconductor materials company serving the consumer, industrial, medical and defense industries. SiOnyx's patented semiconductor process dramatically enhances the performance of light-sensing devices, delivering hundreds of times more sensitivity to light than traditional silicon. As a result, SiOnyx's platform represents a significant breakthrough in the development of smaller, cheaper, high-performing photonic devices in applications ranging from simple light detection to advanced digital imaging, photovoltaics and more.

For more information, please click here

Contacts:
SiOnyx Inc
Cummings Center 100
Suite 244G
Beverly, Ma 01915
Phone: (978) 922-0684
Fax: (978) 922-0647

Copyright © PR Newswire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Imaging

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Photoacoustic imaging and photothermal cancer therapy using BR nanoparticles September 26th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Discoveries

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Announcements

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Military

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project