Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SiOnyx Demonstrates Record-Breaking Photosensitivity With New Light Detectors

Abstract:
SiOnyx Inc., in collaboration with the Army Research Office (ARO), has successfully demonstrated pixel-scale detectors with room temperature Detectivity (D*) exceeding 1x10(14) Jones. This represents a full 10x improvement over traditional silicon detectors, setting a record for performance that paves the way for SiOnyx to lead in new sponsored research programs with the Army Night Vision and Electronic Sensors Directorate (NVESD) and Defense Advanced Research Projects Agency (DARPA).

SiOnyx Demonstrates Record-Breaking Photosensitivity With New Light Detectors

Beverly, MA | Posted on June 25th, 2010

Dr. A. Fenner Milton, the US Army NVESD's Director noted, "NVESD is interested in approaches to low light level imaging that have the potential for leveraging silicon technology to reduce costs."

SiOnyx is commercializing a fundamentally new semiconductor processing technique that represents a breakthrough in the development of smaller, cheaper, high-performing silicon photonic devices. Based on a novel laser implant method first discovered at Harvard and commonly referred to as 'Black Silicon,' SiOnyx's patented semiconductor process dramatically enhances the performance of light-sensing devices across a range of applications in the consumer, industrial, medical and defense industries. Under the ARO grant, SiOnyx has shown the applicability of its technology to CMOS image sensors and other mass-produced photonic devices used in demanding imaging and photo-detecting applications.

"Signal-to-noise ratio and dynamic range dictate the ultimate performance in any photonic system," said Stephen Saylor, CEO of SiOnyx. "In applications ranging from medical imaging to digital photography, these basic device characteristics underlie the quality of experience. The record-setting results shown in our work with the ARO are astounding and demonstrate once again how SiOnyx's technology platform has the potential to dramatically alter performance in these multi-billion dollar industries."

With the completion of this milestone and resulting performance breakthroughs, SiOnyx is now leading newly sponsored programs with the US Army's NVESD and DARPA that will advance the use of Black Silicon in low light and infrared imaging.

Dr. Nibir Dhar, Program Manager in DARPA's Microsystems Technology Office, added, "High-performance, low-cost, small infrared cameras at room temperature will have significant impact on many aspects of modern war fighting. Black Silicon offers an enabling pathway in low-cost CMOS camera development for near-infrared applications."

####

About SiOnyx Inc.
SiOnyx is a semiconductor materials company serving the consumer, industrial, medical and defense industries. SiOnyx's patented semiconductor process dramatically enhances the performance of light-sensing devices, delivering hundreds of times more sensitivity to light than traditional silicon. As a result, SiOnyx's platform represents a significant breakthrough in the development of smaller, cheaper, high-performing photonic devices in applications ranging from simple light detection to advanced digital imaging, photovoltaics and more.

For more information, please click here

Contacts:
SiOnyx Inc
Cummings Center 100
Suite 244G
Beverly, Ma 01915
Phone: (978) 922-0684
Fax: (978) 922-0647

Copyright © PR Newswire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Imaging

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Discoveries

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Announcements

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Military

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Rare element to provide better material for high-speed electronics May 30th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project