Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCI researchers develop world’s first plastic antibodies

“Plastic antibodies” that UCI scientists used to stop the spread of bee venom in mice could be designed to combat deadlier toxins and pathogens.
Photo by Hoang Xuan Pham / University Communications
“Plastic antibodies” that UCI scientists used to stop the spread of bee venom in mice could be designed to combat deadlier toxins and pathogens. Photo by Hoang Xuan Pham / University Communications

Abstract:
In a breakthrough, UCI chemists create synthetic antibodies that block bee venom

UCI researchers develop world’s first plastic antibodies

Irvine, CA | Posted on June 23rd, 2010

UC Irvine researchers have developed the first "plastic antibodies" successfully employed in live organisms - stopping the spread of bee venom through the bloodstream of mice.

Tiny polymeric particles - just 1/50,000th the width of a human hair - were designed to match and encase melittin, a peptide in bee venom that causes cells to rupture, releasing their contents. Large quantities of melittin can lead to organ failure and death.

The polymer nanoparticles were prepared by "molecular imprinting" a technique similar to plaster casting: UCI chemistry professor Kenneth Shea and project scientist Yu Hoshino linked melittin with small molecules called monomers, solidifying the two into a network of long polymer chains. After the plastic hardened, they removed the melittin, leaving nanoparticles with minuscule melittin-shaped holes.

When injected into mice given high doses of melittin, these precisely imprinted nanoparticles enveloped the matching melittin molecules, "capturing" them before they could disperse and wreak havoc - greatly reducing deaths among the rodents.

"Never before have synthetic antibodies been shown to effectively function in the bloodstream of living animals," Shea says. "This technique could be utilized to make plastic nanoparticles designed to fight more lethal toxins and pathogens."

Takashi Kodama of Stanford University and Hiroyuki Koide, Takeo Urakami, Hiroaki Kanazawa and Naoto Oku of Japan's University of Shizuoka also contributed to the study, published recently in the Journal of the American Chemical Society.

Unlike natural antibodies produced by live organisms and harvested for medical use, synthetic antibodies can be created in laboratories at a lower cost and have a longer shelf life.

"The bloodstream includes a sea of competing molecules - such as proteins, peptides and cells - and presents considerable challenges for the design of nanoparticles," Shea says. "The success of this experiment demonstrates that these challenges can be overcome."

####

About University of California, Irvine
Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s largest employer, UCI contributes an annual economic impact of $3.9 billion. For more UCI news, visit www.today.uci.edu.

For more information, please click here

Contacts:
Media Contact
Laura Rico
University Communications
949-824-9055

Copyright © University of California, Irvine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Synthetic Biology

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

The magic of microbes: ONR engineers innovative research in synthetic biology February 19th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

DNA 'building blocks' pave the way for improved drug delivery January 12th, 2016

Possible Futures

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Nanomedicine

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Nanobiotechnology

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic