Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First graphene touchscreen

The researchers built up a graphene layer on copper foil and then used rollers to transfer the graphene to a polymer support and then onto a final substrate. © Nature Nanotechnology
The researchers built up a graphene layer on copper foil and then used rollers to transfer the graphene to a polymer support and then onto a final substrate. © Nature Nanotechnology

Abstract:
Researchers in Korea and Japan have fabricated films of graphene - planar sheets of carbon one atom thick - measuring tens of centimetres. The researchers engineered these large graphene films into transparent electrodes, which were incorporated into touchscreen panel devices.

By Simon Hadlington

First graphene touchscreen

UK | Posted on June 22nd, 2010

The new work represents another milestone in the astonishing technological advance of graphene from its initial isolation only a few years ago. Experts predict that graphene will be found in consumer products within a couple of years.

The team, led by Jong-Hyun Ahn and Byung Hee Hong of Sungkyunkwan University, Korea, grew a graphene layer on copper foil by chemical vapour deposition (CVD) using a previously demonstrated technique.

Using a roller, the graphene face can then be pressed against an adhesive polymer support and the copper etched away, leaving the graphene film attached to the polymer. The graphene can then be pressed against a final substrate - such as polyethylene terephthalate (PET) - again using rollers, and the polymer adhesive released by heating. Subsequent layers of graphene can then be added in a similar way.

The researchers used this technique to create a rectangular graphene film measuring 30 inches (76 cm) in the diagonal. The graphene was doped by treating with nitric acid and in this form the graphene sheet can act as a large, transparent electrode and was demonstrated to work in a touchscreen device.

Typically, transparent electrodes used in such applications are made from indium tin oxides (ITO). The researchers say that the graphene electrode has better transparency and is tougher. 'The price of indium has increased by a few times over the past decades and this will be more serious as markets for display and solar cells expand,' says Ahn.'In addition, oxide materials like ITO are usually fragile and weak.' Because of this, ITO-based touchscreens have a finite life span, whereas, says Ahn, a graphene-based screen should last essentially forever.

'In addition, the graphene production needs just a tiny amount of carbon sources without any rare materials, and the copper substrate is recyclable, so it is much more environmentally friendly than ITO production.'

Andre Geim of the University of Manchester in the UK, who is widely credited as being the founding father of modern graphene science having discovered isolated graphene around five years ago, says the new work demonstrates the astonishing rapidity with which graphene technology has advanced. 'This clearly shows that graphene is no longer wishful thinking as far as industrial applications go. People have gone from lab-scale to industrial-scale production unbelievably quickly. Within two years we will have consumer products.'

####

For more information, please click here

Copyright © Royal Society of Chemistry

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

GTC Shanghai Highlights GF’s Momentum in China: Company shares details of technology roadmap and customer adoption in the world’s fastest-growing market for semiconductors October 23rd, 2017

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Videos/Movies

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Display technology/LEDs/SS Lighting/OLEDs

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Missing atoms in a forgotten crystal bring luminescence October 10th, 2017

Possible Futures

GTC Shanghai Highlights GF’s Momentum in China: Company shares details of technology roadmap and customer adoption in the world’s fastest-growing market for semiconductors October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Announcements

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Research partnerships

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project