Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Enhancing the power of batteries

From left, students Betar Gallant and Seung Woo Lee and professors Yang Shao-Horn and Paula Hammond, in one of the labs where the use of carbon nanotubes in lithium batteries was researched.
From left, students Betar Gallant and Seung Woo Lee and professors Yang Shao-Horn and Paula Hammond, in one of the labs where the use of carbon nanotubes in lithium batteries was researched.

Abstract:
MIT team finds that using carbon nanotubes in a lithium battery can dramatically improve its energy capacity.

By David L. Chandler, MIT News Office

Enhancing the power of batteries

Cambridge, MA | Posted on June 22nd, 2010

Batteries might gain a boost in power capacity as a result of a new finding from researchers at MIT. They found that using carbon nanotubes for one of the battery's electrodes produced a significant increase — up to tenfold — in the amount of power it could deliver from a given weight of material, compared to a conventional lithium-ion battery. Such electrodes might find applications in small portable devices, and with further research might also lead to improved batteries for larger, more power-hungry applications.

To produce the powerful new electrode material, the team used a layer-by-layer fabrication method, in which a base material is alternately dipped in solutions containing carbon nanotubes that have been treated with simple organic compounds that give them either a positive or negative net charge. When these layers are alternated on a surface, they bond tightly together because of the complementary charges, making a stable and durable film.

The findings, by a team led by Associate Professor of Mechanical Engineering and Materials Science and Engineering Yang Shao-Horn, in collaboration with Bayer Chair Professor of Chemical Engineering Paula Hammond, are reported in a paper published June 20 in the journal Nature Nanotechnology. The lead authors are chemical engineering student Seung Woo Lee PhD '10 and postdoctoral researcher Naoaki Yabuuchi.

Batteries, such as the lithium-ion batteries widely used in portable electronics, are made up of three basic components: two electrodes (called the anode, or negative electrode, and the cathode, or positive electrode) separated by an electrolyte, an electrically conductive material through which charged particles, or ions, can move easily. When these batteries are in use, positively charged lithium ions travel across the electrolyte to the cathode, producing an electric current; when they are recharged, an external current causes these ions to move the opposite way, so they become embedded in the spaces in the porous material of the anode.

In the new battery electrode, carbon nanotubes — a form of pure carbon in which sheets of carbon atoms are rolled up into tiny tubes — "self-assemble" into a tightly bound structure that is porous at the nanometer scale (billionths of a meter). In addition, the carbon nanotubes have many oxygen groups on their surfaces, which can store a large number of lithium ions; this enables carbon nanotubes for the first time to serve as the positive electrode in lithium batteries, instead of just the negative electrode.

This "electrostatic self-assembly" process is important, Hammond explains, because ordinarily carbon nanotubes on a surface tend to clump together in bundles, leaving fewer exposed surfaces to undergo reactions. By incorporating organic molecules on the nanotubes, they assemble in a way that "has a high degree of porosity while having a great number of nanotubes present," she says.

Powerful and stable

Lithium batteries with the new material demonstrate some of the advantages of both capacitors, which can produce very high power outputs in short bursts, and lithium batteries, which can provide lower power steadily for long periods, Lee says. The energy output for a given weight of this new electrode material was shown to be five times greater than for conventional capacitors, and the total power delivery rate was 10 times that of lithium-ion batteries, the team says. This performance can be attributed to good conduction of ions and electrons in the electrode, and efficient lithium storage on the surface of the nanotubes.

In addition to their high power output, the carbon-nanotube electrodes showed very good stability over time. After 1,000 cycles of charging and discharging a test battery, there was no detectable change in the material's performance.

The electrodes the team produced had thicknesses up to a few microns, and the improvements in energy delivery only were seen at high-power output levels. In future work, the team aims to produce thicker electrodes and extend the improved performance to low-power outputs as well, they say. In its present form, the material might have applications for small, portable electronic devices, says Shao-Horn, but if the reported high-power capability were demonstrated in a much thicker form — with thicknesses of hundreds of microns rather than just a few — it might eventually be suitable for other applications such as hybrid cars.

While the electrode material was produced by alternately dipping a substrate into two different solutions — a relatively time-consuming process — Hammond suggests that the process could be modified by instead spraying the alternate layers onto a moving ribbon of material, a technique now being developed in her lab. This could eventually open the possibility of a continuous manufacturing process that could be scaled up to high volumes for commercial production, and could also be used to produce thicker electrodes with a greater power capacity. "There isn't a real limit" on the potential thickness, Hammond says. "The only limit is the time it takes to make the layers," and the spraying technique can be up to 100 times faster than dipping, she says.

Lee says that while carbon nanotubes have been produced in limited quantities so far, a number of companies are currently gearing up for mass production of the material, which could help to make it viable for large-scale battery manufacturing.

Yury Gogotsi, professor of materials science at Drexel University, says, "This is an important achievement, because there is a need for energy storage in a thin-film format for powering portable electronic devices and for flexible, wearable electronics. Bridging the performance gap between batteries and electrochemical capacitors is an important task, and the MIT group has made an important step in this direction."

Some uncertainties remain, however. "The electrochemical performance data presented in the article may only be valid for relatively thin films with no packaging," Gogotsi says, pointing out that the measured results were for just the individual electrode, and results might be different for a whole battery with its multiple parts and outer container. "The question remains whether the proposed approach will work for much thicker conventional electrodes, used in devices that are used in hybrid and electric cars, wind power generators, etc." But, he adds, if it does turn out that this new system works for such thicker electrodes, "the significance of this work will increase dramatically."

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Self Assembly

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Nanotubes/Buckyballs/Fullerenes

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nano-C Receives EPA Approvals for Single Walled Carbon Nanotubes July 21st, 2015

Global Carbon Nanotube Industry 2015 Market Research Report July 20th, 2015

Old astronomic riddle on the way to be solved July 16th, 2015

Discoveries

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Announcements

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Energy

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Automotive/Transportation

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Researchers boost wireless power transfer with magnetic field enhancement July 23rd, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

Nanocomposites Improve Tire Properties July 9th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stretching the limits on conducting wires July 25th, 2015

BESSTECH’s Innovative Battery Technology is Highlighted During Featured Presentations at SEMICON West 2015: CEO Fernando Gómez-Baquero delivers invited remarks at the event’s Silicon Innovation Forum and Semiconductor Technology Symposium July 16th, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

BESSTECH Names Doug Grose as Chief Technology Officer: Former GLOBALFOUNDRIES CEO to drive technology roadmap and strategic partnerships for emerging lithium-ion battery component company July 14th, 2015

Research partnerships

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project