Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stretching single molecules allows precision studies of interacting electrons

A scanning electron micrograph of a gold bridge suspended 40 nanometers above a silicon substrate. In the experiment, the bridge is severed in the middle, a single molecule is suspended across the gap, and the substrate is bent to stretch the molecule while simultaneously measuring the electron current through the molecule. Credit: Joshua Parks
A scanning electron micrograph of a gold bridge suspended 40 nanometers above a silicon substrate. In the experiment, the bridge is severed in the middle, a single molecule is suspended across the gap, and the substrate is bent to stretch the molecule while simultaneously measuring the electron current through the molecule. Credit: Joshua Parks

Abstract:
Scientists everywhere are trying to study the electrical properties of single molecules. With controlled stretching of such molecules, Cornell researchers have demonstrated that single-molecule devices can serve as powerful new tools for fundamental science experiments. Their work has resulted in detailed tests of long-existing theories on how electrons interact at the nanoscale.

By Anne Ju

Stretching single molecules allows precision studies of interacting electrons

Ithaca, NY | Posted on June 11th, 2010

The work, led by professor of physics Dan Ralph, is published in the June 10 online edition of the journal Science. First author is Joshua Parks, a former graduate student in Ralph's lab.

The scientists studied particular cobalt-based molecules with so-called intrinsic spin -- a quantized amount of angular momentum. Theories first postulated in the 1980s predicted that molecular spin would alter the interaction between electrons in the molecule and conduction electrons surrounding it, and that this interaction would determine how easily electrons flow through the molecule. Before now, these theories had not been tested in detail because of the difficulties involved in making devices with controlled spins.

Understanding single-molecule electronics requires expertise in both chemistry and physics, and Cornell's team has specialists in both.

"People know about high-spin molecules, but no one has been able to bring together the chemistry and physics to make controlled contact with these high-spin molecules," Ralph said.

The researchers made their observations by stretching individual spin-containing molecules between two electrodes and analyzing their electrical properties. They watched electrons flow through the cobalt complex, cooled to extremely low temperatures, while slowly pulling on the ends to stretch it. At a particular point, it became more difficult to pass current through the molecule. The researchers had subtly changed the magnetic properties of the molecule by making it less symmetric.

After releasing the tension, the molecule returned to its original shape and began passing current more easily -- thus showing the molecule had not been harmed. Measurements as a function of temperature, magnetic field and the extent of stretching gave the team new insights into exactly what is the influence of molecular spin on the electron interactions and electron flow.

The effects of high spin on the electrical properties of nanoscale devices were entirely theoretical issues before the Cornell work, Ralph said. By making devices containing individual high-spin molecules and using stretching to control the spin, the Cornell team proved that such devices can serve as a powerful laboratory for addressing these fundamental scientific questions.

The study was funded primarily by the National Science Foundation through the Cornell Center for Materials Research, a Materials Research Science and Engineering Center.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Anne Ju
(607) 255-9735


Related Information:
Dan Ralph group people.ccmr.cornell.edu/~ralph/

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instrumentsí Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Physics

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

Seeing quantum motion August 30th, 2015

Chemistry

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Laser-burned graphene gains metallic powers: Rice University scientists find possible replacement for platinum as catalyst August 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Sustainable nanotechnology center September 1st, 2015

Academic/Education

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Announcements

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Quantum nanoscience

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Seeing quantum motion August 30th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic